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SECTION 3 

METHODS OF THE STABILITY STUDY OF MODELS OF 

PATHOLOGICAL PROCESSES 

 

Since models of systemic medical research are mainly described by 

nonlinear differential equations that do not have analytical solutions, very often 

when studying the problems of evidence-based medicine, it is necessary to look 

for methods other than the analytical integration of differential equations. Along 

with the use of numerical methods for solving differential equations, it is often 

possible to identify important qualitative properties of solutions of nonlinear 

equations without solving them explicitly. Such qualitative properties include 

the stability of equation solutions, which will be discussed in the third section. 

In addition, the coordination of stability properties with the corresponding forms 

of the course of pathological processes will be shown. The obtained 

mathematical methods will be illustrated by a software implementation from the 

support environment for systemic medical research. 

 

 

3.1. Studies of stability in medical biological systems with a delay 

 

Our goal is to analyze systems of nonlinear differential equations with a 

delay of the third order, close to the model of immune defense of the human 

body, developed by a group of mathematicians and doctors headed by G.I. 

Marchuk [53]. The method of Lyapunov-Krasovsky functionals will be used in 

the analysis [143]. 

The main results of the theory of stability. A wide range of problems is 

associated with the study of the dynamics of objects described by differential 

equations with a delay 
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( ) [ ( )], 0, 0.t

d
x t F x s s t

dt
= −        (3.1.1) 

 

Here ( ) nx t R , is [ ( )]tF x s the functional defined for an arbitrary fixed 0t  on a 

set of piecewise continuous functions 
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One of the most general methods for studying the stability of such 

problems is the direct Lyapunov method. The use of this technique for systems 

with aftereffects is associated with two directions. The first is based on 

Lyapunov's finite-dimensional functions and uses the theorems of B.S. 

Razumikhin. However, this approach has a drawback. Namely, the need for 

these stability conditions has not been proven. Differential-difference equations 

SLFD should be considered in infinite-dimensional spaces. The use of finite-

dimensional Lyapunov functions leads to unnecessary sufficient conditions.  

For this reason, M.M. Krasovsky [42] proposed to approach the study of 

stability from the point of view of studying processes in functional spaces. As a 

point of space, he proposed to consider not a vector ( )x t , but a vector-segment 

of this trajectory ( ) { ( ) : 0}tx s x t s s= + −   . Instead of a function ( ( ))v x t ,  he 

proposed to use [ ( )]tV x s  the functionality defined on the segment ( )tx s . The use 

of functionals is a natural generalization of the direct Lyapunov method for 



 143 

ordinary differential equations to the delayed equations. The main result for 

autonomous systems is stated [102]. 

Theorem 3.1.1. Let there be  : , (0) 0V C R V→ = - functionality and 

continuous functions , : ,a b R R+ +→ such that ( ) 0a r  at 0r  , ( )a r → at , at 

r → , 

(| ( ) |) [ ( )], [ ( )] (| ( ) |).t ta x t V x s V x s b x t
•

  −  

 

Then the unperturbed solution of  0x   the system (3.1.1) is stable, and each 

solution is bounded. If, in addition,  ( ) 0b r   at 0r  , then each solution goes to 

zero at  t → .  

 

One common case of a third-order nonlinear system with a delay. 

Consider a system of differential equations with a delay 

 

( ) ( ) ( ( ), ( ), ( )),

( ) ( ) ( ( ), ( ), ( )),

( ) ( ) ( ( ), ( ), ( )),

x t ax t X x t y t z t

y t by t Y x t y t z t

y t cz t Z x t y t z t

  

  

  

•

•

•

= + − − −

= + − − −

= + − − −

    (3.1.2) 

 

which is a generalization of the models used to describe immunity. Here ,a b  

and c are the negative constants, the functions , ,X Y Z  satisfy the following 

conditions 
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( , , )
0, 0,

( , , )
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( , , )
,

y

z

X x y z
при x y z

x

Y x y z
g y

x

Z x y z
g z

x

→ + + →





    (3.1.3) 

 

where ,y zg g are positive constants. 

 

Theorem 3.1.2. Let the conditions (3.1.3) be met.  

Then the unperturbed solution 0x y z= =    (3.1.2) is stable and 

exponentially x stable. 

The proof is given in [159, p. 78-79].   

Resistance of the immune defense system. Equations have been 

proposed to describe the immune defense system [53]. Our further goal is to 

obtain sufficient resistance conditions explicitly for such a system: 

 

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ), ( ) ( ( )) ( ).

x t x t bx t y t cx t

y t y t kx t y t lz t z t mf x t nz t



    

•

• •

= − −

= − + − − + − = − −

     (3.1.4) 

 

Here ( )
x

f x
q x

=
+

. For this purpose, we introduce the following notations. Let 

1 2 3 1 2 3, , , , ,h h h g g g be arbitrary positive constants.  Let 
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1 1 1 2 2 2 3 3 3

2 2
2 23

4 1 1 2 3 1 2 1 2 32

2 2
2 2 23

5 2 4 6 3 5 2 2 1 3 1 1 1 32

2 , 2 , 2 ,

,

, ( ).

h g h g h n g

h m
g h

q

h m
g g g h g h

q







 = − +  = − +  = − +

 = −    −   −  

 = −   = −  + −  −  − 

 

 

Theorem 3.1.3.  Let there be positive constants 

1 2 3 1 2 3, , , , ,h h h g g g satisfying inequalities 

1 2 3 4 60, 0, 0, 0, 0.           

Then the trivial solution (3.1.10) is asymptotically stable. 

The proof is given in [159, pp. 80-81].   

Exponential estimates. Next, we will consider only the case when the 

conditions of theorem 3.1.3 take place. Let us introduce some notation. Let 

max ( )W  be the maximum eigenvalue of the matrix W .   Let 

 

1 2 3 1 2 3

1 2 3 1 2 3

1 max 1 max

min{ , , }, min{ , , },

max{ , , }, max{ , , },

1 1
[ ( ) ], [ ( ) ].

h h h h g g g g

h h h h g g g g

a W g b W g
h h
 

= =

= =

= − = +

 

 

Theorem 3.1.4.  Let the system (3.1.4) be such that the conditions of 

theorem 3.1.3 hold. In addition:  

max ( ) 0.W g +   

 

Then there is: 

0( )2 2 2 0
0

( )
( ) ( ) ( ) , .

t tV t
x t y t z t e t t

h

− −
+ +    

 

Here  is the positive solution of the equation: 
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1 1 0a b e + + =  

 

To prove this theorem, a lemma is required [40, p. 31], which is often 

used in qualitative analysis of systems with an aftereffect.  

 

Lemma 3.1.1. Let the scalar function ( ) 0p t  be continuous by ],[ 0 Tht − . 

If ],[ 0 Ttt , then the function )(tp is continuously differentiable and satisfies the 

inequality 

0( ) ( ) , , ( ), 0.t tp t p t p t t T p p t


    
•

 − +   = + −    

 

Here   and   are the constants and  0   .  Then 

0

0

( )

0( ) , ,
t t

tp t p e t t T




− −
    

 

where  is the only positive solution of the equation: 

.e  = −  

 

In proving theorem 3.1.4, 
2L the -norm in the space of squared functions 

on [ ,0]− :  

1/ 2
0

2

2
( ) ( ) .x s x s ds


−

 
=  
 
  

 

The proof of theorem 3.1.4 is given in [156, pp. 190-191].  
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Examples. Consider an example illustrating the so-called subclinical 

form.  

Let 

1.04, 0.6, 1,

0.1, 0.4, 0.04,

1, 100, 0.01,

0.1

b c

k l

m q n







= = =

= = =

= = =

=

 

 

Let's use the same Lyapunov-Krasovsky functionality at 

1 2 3 3,h h h= = = 1 2 3 1g g g= = = . Applying theorem 3.1.4 to this system, we 

have: 0.98 = . Fig. 3.1.1 shows changes , ,x y z  over time. 
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Rice. 3.1.1. Modeling of the subclinical form of the disease, using systems with 

and without delay. 

The following example illustrates the chronic form of the disease. 

Let 

1, 10, 1.01,

100, 5, 34,

1, 10000, 0.2,

0.1

b c

k l

m q n







= = =

= = − =

= = =

=

 

 

Fig. 3.1.2 shows changes , ,x y z in time.  
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Rice. 3.1.2.  Modeling of the chronic form of the disease using systems with a 

delay and without a delay. 

 

Instability. In medicine, the case of instability corresponds to the acute 

and fatal forms of the disease. Our next goal is to show sufficient conditions of 

instability for a trivial solution of the system: 

 

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ( )) ( ).

x t x t bx t y t cx t

y t y t kx t y t lz t

z t mf x t nz t

  

  



•

•

•

= − − − −

= − + − − +

= − −

    (3.1.5) 

 

The instability theorem for nonlinear systems of general appearance is stated 

[80]. 
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Theorem 3.1.5.   We consider the system (3.1.1). Let  ( , )tx    be a 

solution starting from a point  ( , )  . Suppose that there exists 0  , open in  

C  the set U  and continuous bounded scalar functionality :V clU R→ , such 

that: 

(i) ( ) 0V    on  U , ( ) 0V  =   on the border U ; 

(ii) 0 belongs to the closure  U ; 

(iii) ( ) ( (0) )V u   on (0, )U B  ; 

(iv) 
*

( (0) )V w 
•

 on  [ , ) (0, )U B    , 

*

0

1
( , ) lim [ ( ( , ) ( )],t h

h

V t V x t V
h

  
+

•

+
→

= −  

 

where  ( ), ( )u s w s  are continuous increasing and positive for  0s  . 

 Then the trivial solution (3.1.1) is unstable. That is, every solution 

( , )tx    with the initial function with (0, )U B  must reach the limit 

(0, )B   for a finite time. 

 

Theorem 3.1.6.   Let positive constants , , , , , , ,b c k l m n   be such that 

there is a delay function 
0( , , , , , , , )b c k l m n   =  and continuously 

differentiable positive functions  ( ), ( ), ( ),0F G H      in which the matrix 
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0 0 0 ( ) 0 0 0 0 0
2 2

0 0 0 0 ( ) 0 0 0
2 2 2

0 0 0 0 0 0 0
2 2 2

1
0 0 0 ( ) 0 0 0 0 0 0 0

2

1
( ) 0 0 0 ( ) 0 0 0 0 ( ) 0

2 2 2

1
0 0 0 0 0 ( ) 0 0 0 0 0

2

1
0 ( ) 0 0 0 0 ( ) 0 0 ( ) 0

2 2 2

1
0 0 0 0 0 0 0 ( ) 0 0 0

2

1
0 0 0 0 0 0 0 ( ) 0

2 2 2

c b
c F

l k
G

l n m
n

F

c b
F F F

W G

k
G G G

H

n m
H H


 


 




  




  





•

•

•

−
− − −

− −

− −

−
− − − − −

=

− − − − −

−

− − − − ( )

0 0 ( ) 0 ( ) 0 0 0 0
2 2 2 2

0 0 0 0 0 0 0 ( ) 0 0
2 2

b k b k
F G

m m
H



 



−

− − − − −

− −

 

 

is positive-defined. 

Then the trivial solution (3.1.5) is unstable. 

The proof is given in [156, pp. 494-495].  

 

3.2. Conditions for the stability of the bone reconstruction system 

 

In subsection 2.6, equations were given that describe the system of bone 

tissue reconstruction. Let us investigate the stability conditions of such a 

logistic-type equation. 

Equation (2.6.2) has two steady-state 
1 0P =  states and 

2P = . Let us 

study the stability of the state 
2P .  

Lemma 3.2.1. The state 
2P  of equation (2.6.2) is asymptotically stable at 

0  . 

The proof is given in [158, p. 295].  
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Suppose that the model (2.7.1) estimates the mineral density of bone 

tissue and the height of the vertebrae with a sufficient degree of accuracy. Let us 

study the structure of the equilibrium points of the system (2.7.1). The 

equilibrium points of our system are obtained for the following values ( )t  and 

1( )H t− : 
1(0,0)P  and 1

2( , )P H − . Here 

 

 


 
= −  ,     1 ( )H

  

  

− = − −  , 

The study of the stability of the solution 
2P  will be reduced to the non-

positive certainty of the matrix 

 

1

1

1

1

0 0 0 0
2

1 1
0 0 ( )

2 2

1
20 0 0

2

1 1
0 ( ) 0 0

2 2

1
0 0

2 2 2

a

a b
b a b a

H

a
a b

С H

a b
a b

H

a a b a
a

H



 
   




 




 
 



   


 

−

−

−

−

 
− 

 
  

− − + − +   
  

 
 
 

  + =   
  

 
 
  
 − + +    
 

  
− − +    

  

 

 

The following statement is true.  

Theorem 3.2.1. Let the coefficients of  the , , , ,      system of 

equations (2.7.1) be such that there are positive constants a  and b , at which the 
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matrix is non-positively defined. Then the steady state of the 
2P  system (2.7.1) 

is stable. 

The proof is given in [158, p. 296-297].  

 

3.3. Problems of stability of equilibrium states of the toxic colitis 

system 

 

Consider a simplified example of the model (2.8.1)-(2.8.10), where 

immune defense is reduced to the action of IgA antibodies, the influence of 

circulating immune complexes and phagocytes is also not taken into account, 

( ) 1m  . We assume that the increase in the concentration of lead acetate 

occurs continuously and it is proportional to its current concentration: 

 

1
1 1 1,2 1 2

( )
( ) ( ) ( )

dx t
v x t k x t x t

dt
= − , 

2
2,6 6 2 2 2,1 1,2 1 2

( )
( ) ( ) ( ) ( ) ( )

dx t
k x t k t x t k k x t x t

dt
= − − , 

(3.3.1) 

( )06
6,1,2 1 6 2 6 6 6 6

( )
( ) ( ) ( )

dx t
k x t x t k x t x

dt
 = − − − − , 

10
10,1 1 10 10

( )
( ) ( )

dx t
k x t k x t

dt
= − . 

 

Initial conditions at 
0 6 0[ , ]t t t − : 

 

0

1 1( )x t x= , 
0

2 2( )x t x= , 
0

6 6( )x t x= , 
0

10 10( )x t x= .  (3.3.2) 

 

System (3.3.1)-(3.3.2) has two stationary states. One of them is 
1P : 
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1( ) 0x t = , 

0

2,6 6

2

2

( )
k x

x t
k

= , 

0

6 6( )x t x= , 

1( ) 0x t =  

 

interpreted as a state of a healthy organism, the other is 
2P : 

 

( )

0

2,6 6 1,2 2 1 *

1 6 1

1 6,1,2 2,6 2,1 1,2 6

( )
k x k k v

x t k x
v k k k k k

− +
= − =

− +
, 

*1
2 2

1,2

( )
v

x t x
k

= = , 

( )

0 2

6,1,2 2 1 6 1,2 1,2 6 *

6 6

6,1,2 2,6 2,1 1,2 6 1,2

( )
k k v x k k k

x t x
k k k k k k

− +
= =

− +
, 

( )

0

2,6 6 1,2 2 1 *

10 10,1 6 10

1 6,1,2 2,6 2,1 1,2 6 10

( )
k x k k v

x t k k x
v k k k k k k

− +
= − =

− +
, 

 

interpreted as a chronic course of the disease.  

Study of the stability of the system (3.3.1)-(3.3.2) in the vicinity of points 

1P  and 
2P  is carried out by the method of linearization. 

Statement 3.3.1. Let the coefficients and initial conditions of the system 

(3.3.1)-(3.3.2) be such that the inequality is satisfied: 

 

0

2 1 6 1,2 2,6k v x k k .     (3.3.3) 

 

Then the steady-state of  
1P  the system (3.3.1)-(3.3.2) is stable. If the 

coefficients and initial conditions of the system (3.3.1)-(3.3.2) are such that the 
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condition (3.3.3) is not met, then the steady-state of  
1P  the system (3.3.1)-

(3.3.2) is unstable.  

The proof is given in [185, pp. 97-98].  

Example. Fig. 3.3.1 shows the results of numerical integration of the 

system (3.3.1)-(3.3.2) for parameter values and delay (2.8.12).  

 

 

(a) 
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(b) 

 

(c) 

Rice. 3.3.1. System integration (3.3.1)-(3.3.2). 

 

Fig. 3.3.1a Values close to the equilibrium state are taken as initial conditions: 
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1

0

297.3

297.3

0

P

 
 
 =
 
 
 

 

Namely:  

0 6

1 10x −= , , 0

2 300x =  0

3 300x = , . 0

4 0x = In this case, the condition (3.3.3) is 

fulfilled – the solutions are approaching the steady state.  

Fig. 3.3.1b Values close to the equilibrium state are taken as initial conditions: 

1

0

0.0037

0.0037

0

P

 
 
 =
 
 
 

 

Namely:  

0 6

1 10x −= , 0

2 0.003x = , 0

3 0.003x = , . 0

4 0x = Note that in this case, the inequality 

(3.3.3) is violated - we observe an unstable solution.  

Statement 3.3.2.  Let the parameters and initial conditions of the system 

(3.3.1)-(3.3.2) be such that there are roots of the equation 

 

( )

( )

( ) 043

1

*

22,1210

*

12,11,2

2

2

*

22,112

*

12,11,2110

*

22,110110

*

12,11,2210

10

*

12,11,216,2

*

12,11,10102

*

22,11012

=+−++++

++−−+−++

+−++−







vxkkkxkk

kxkvkxkkvkxkkvkxkkkk

kxkkvkxkkkkxkkvk

 (3.3.4) 

 

with a positive real part. Then the equilibrium state of 
2P  the system (3.3.1)-

(3.3.2) is unstable.  

The proof is given in [185, pp. 101-102].  

Unfortunately, it is impossible to obtain the roots of equation (3.3.5) in 

analytical form in terms of coefficients even using the modern MAPLE symbol 

calculation package. Therefore, we will illustrate statement 3.3.2 using the 
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example of a system (3.3.1)-(3.3.2) with parameter values and delay (2.8.12). 

0

6 89.45x =  In this case, equation (3.3.5) has roots: 

r

0.601− 1.822i−

0.601− 1.822i+

0

3.28















=

 

one of which has a positive real part - solution P2 - unstable (Fig. 3.3.1c).  

 

 

3.4. Qualitative study of piecemeal continuous systems in 

radiotherapy 

 

Radiotherapy is an effective treatment in oncology. In the early (T1 and 

T2) stages of cancer, the results of radiotherapy are comparable to those 

achieved by surgery. And even more, radiotherapy is preferred in some cases 

when attention is paid to the protection of the affected organ. In more complex 

cases, radiotherapy is often used after surgery as paired therapy together with 

chemotherapy (chemoradiotherapy) . 

Radiotherapy can be guided by external light flux or other techniques.  

The choice of one or another method depends on the location of the tumor and 

the purpose of therapy. 

Today, using radiotherapy, they face numerous problems. The most 

important among them is how to control the number of cells in the tumor (level 

of damage).  The goal is to achieve the desired tumor management. Even until 

now, this problem is being solved experimentally. But, as it has been 

established, the degree of damage to cells by radiation as a whole is an 

exponential function of the radiation dose [120].  Next, a method for 

constructing such exhibitors will be presented. Such exponential estimates are 

important in answering the following questions. 

I. What radiation time (or radiation dose) do we need to reach the desired 
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tumor size; 

II. When will we be able to achieve the desired tumor size by knowing the 

radiation dose? 

III. What will be the minimum and maximum size of the tumor after 

radiotherapy? 

IV. How long can a tumor (such as a prostate) be histologically noticeable 

after radiation. 

Problem statement. For the first time, delayed differential equations for 

studying the cell's response to X-rays were proposed in [64] and were of the 

form 

 

0

0

( ) ( ) [ ( ) ], 0 ,

( ) [ ( ) ],

x t ax t b x t x t T

x t b x t x t T





= + − −  

= − − 
  (3.4.1) 

 

Here t  is the time variable, the scalar function ( )x t   denotes the concentration 

of a substance in the irradiated cell 
0x  - the normal equilibrium concentration of 

this substance, when there is no irradiation, T  is the irradiation time. It is 

assumed that cells have the ability to make up for the lack or eliminate the 

excess of this substance, but their reaction has a delay time equal to   . 

Therefore: 

 

0( ) , 0x t x t       (3.4.2) 

 

In equation (3.4.1), the constant a  depends on the degree of irradiation, the 

constant b  shows the reaction of the cell to deviations from the equilibrium 

concentration 
0x . 
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Equations (3.4.1) and (3.4.2) were proposed in [64] and are widely used 

today in medical radiology to assess the effects of radiotherapy used in the 

treatment of cancer [128]. 

Let us denote through 2 ([ ,0], )nL R−  the  space Lebesgue functions 

defined on [ ,0]−  with values in nR . For a fixed, 0    a Hilbert space 

2 ([ ,0], )n nH R L R=  −  with a scalar product 
0

1 2 1 2 1 2, ( ) ( )T Tu u v v s s ds


 
−

= +  is 

considered, where ( , )i i iu v H=   and the norm 

0

( , ) ( ) ( )T Tv v v s s ds


  
−

= +   

In the future, the trajectory interval ( )tx  of length   is denoted by 
tx , i.e. 

( )tx x t s= +   for any 0s−   . 

We will use the following norms 

1/ 2
0

2

2 0
( ) , max ( ) ,t t

s
x x t s ds x x t s

 


−  
−

 
= + = + 
 
  

where ( )x t s+  is the Euclidean norm. 

Equations (3.4.1), (3.4.2) are representatives of the class of systems with a 

delay: 

0

0

( ) ( , ) ( ) ( , )[ ( ] ],0 ,

( ) ( , )[ ( ) ], ,

( ) , 0.

t t

t

o

x t A t x x t B t x x t x t T

x t B t x x t x t T

x t x t





= + − −  

= − − 

    

(3.4.3) 

Here 
0x  is a constant vector, 2, : ([ ,0], )n n nA B R L R R  − →  - matrix-significant 

operators. Equations (3.4.3) are not considered in this work, but it is believed 

that they will play an important role in applications similar to radiotherapy in the 

future. 

The solution to the initial problem (3.4.3) for each 0t   is  the 

2([ , ], ).nx L t R −  function It is known that there is a single solution (3.4.3), 
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determined for [ , ]−   which continuously depends on the initial data in the 

norm H . 

System (3) can be rewritten in the usual "linear" form 

(0) (0)
,

t t

t t

x xd
A

x xdt

   
=   

   
    (3.4.4) 

0 0 0 0( (0), ) ( , ) ,x x x x H=       (3.4.5) 

where 

0

0

( ) ( , ) ( ) ( , )[ ( ) ],0 ,

(0) ( ) ( , )[ ( ) ],

( )
, 0

t t

t t

t
t

x t A t x x t B t x x t x t T

x x t B t x x t x t T
A

x dx s
s

ds







 = + − −  
 

  = − −  = 
  

−   
 

 (3.4.6) 

-- infinitesimal operator. 

Linear transformations of dependent quantities. Corresponding 

transformations make it possible to simplify the system (3.4.3). This is very 

important in cases where it is necessary to find estimates of solutions in an 

explicit form.  

Lemma 3.4.1. The study of the behavior of the solution of the system (3) 

is t T  reduced to the study of the equation 

0

( )
( , ) ( )t

dx t
B t x x x t

dt
= + −     (3.4.7) 

 

The proof is given in [211, pp. 263-264].  

 

Lemma 3.4.2. Let ( , ) , ( , )t tA t x A B t x B    be the constants of the 

matrices that switch with each other. Then, when  0 t T   studying the stability 

of solutions, equations (3.4.3) can be reduced to the study of the stability of the 

system described by the equations 

( )
( )

dx t
Bx t

dt
= −      (3.4.8) 
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The proof is given in [211, p. 264].  

 

In the future, we will consider only the system (3.4.3), assuming that the 

conditions of lemma 3.4.2 take place. This allows us to replace the initial 

problem (3.4.3) with the 

 

1

0

( )
( ), 0

( ) ( ) , 0At

dx t
Bx t t

dt

x t e A B Ax t



−

= − 

= + −  

    (3.4.9) 

 

where 

1

0

0

( ( ) ( ) ),0 ,
( )

( ) ,

Ate x t A B Bx t T
x t

x t x t T

− − − +  
= 

−   

 

The system (3.4.3) in the form (3.4.9) will be used to obtain exponential 

estimates of the solution. There are two main methods for finding estimates for 

systems with an explicit delay, based on the method of Lyapunov functionals. In 

this subsection, they are applied to the system (3.4.3). 

Evaluation of the solution as a result of difference inequality. Consider 

the behavior of the solution (3.4.3) at 0t  . Let us use the technique proposed in 

[108] for functional-differential equations 

 

( ) ( , ) ( ) ( , ) ( )t tx t A t x x t B t x x t = + − .
 

 

The main idea of this approach is the use of functionalities 
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0

( , ) (0) (0) ( ) ( ) ( )T Tv t s V t s s ds


    
−

= + +    (3.4.10) 

 

Note that for a specific solution, we can consider the functionality (3.4.10) 

as a function of t. 

( ) ( ), tv t v t x=  

 

We also note that if   ( , ) , ( , )t tA t x A B t x B   are the constant matrices, then we 

can replace them in the functionality (3.4.10) ( )V t s V+   

In the paper [108], exponential estimates for ( )v t . These estimates are 

based on inequality  

( ) ( 2 ) ,v t v t d −      (3.4.11) 

 

where  1d   there is a constant that can be defined. 

Theorem 3.4.1. [108]. Suppose that  

 (And) there is a number 1, such that  

2

1( ) ( ) , 0v t x t t  , 

 

(ii) there are positive numbers a, b and c such that  

 

( , , ( , , , ( ) , .A A t a B B t b C V V t c t   =  =   =   −
 

 

Then there are steels 0    and 0N   those that  

( ) (0) , 2 .vtv t v Ne t −       (3.4.12) 

 

Remark 3.4.1. The above values 0    and 0N 

 

have an obvious form, 

namely let 
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0

1

1/ 2

0 0

1
,

1 1 1, ,
(1 ) 8(1 0

,

f
f d

c a b c

c

 
  

 

 


 += = − = 

+ + + 


 

 

where c0 is the positive solution of the equation 3/ 2

0 0 1 0fc c+ − =  and  

0 0 .c =  

Then 

ln 1
, .

2

d
v N

d
= − =

 

 

Let's apply the assumption (3.4.12) to the system(3.4.3) at 0t  . 

Lemma 3.4.3. Let the system (3.4.3) be such that the conditions of 

theorem 3.4.1 are met. Then, if 2 t T    , then 

( )
1/ 2 1/ 2 2

0 0( ) (1 ) .
p

A tB
x t x c x N e

A B 


−

 + +
+   

(3.4.13) 

 

The proof is given in [185, p. 109]. 

Lemma 3.4.4. Let the system (3.4.3) be such that the conditions of 

theorem 3.4.1 are met. Then, if 2t T    , then 

1/ 2 1/ 2 2
0 1( ) (1 )

vt

x t x c N N e
−

− + +     (3.4.14) 

 

Here 

1/ 2 1/ 2 ( )

1 0(1 ) .v TN c x N e 


 − − −= +  

 Proof. The same ideas are used as in lemma 3.4.3. 
1N  is an estimate 

Tx . 
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Evaluation of the solution as a result of differential-difference 

inequalities. Irregularities (3.4.14) can be used to solve the following problems 

that arise in radiotherapy: 

(i) Reaching tumor size L .  The exposure time T is fixed. How to find the time t 

when the level of tumor size will be less than the specified L . 

(II) Finding the exposure time T. It is necessary to obtain the desired tumor size 

that is smaller than the specified L  for a fixed time t* due to the change in the 

exposure time T. 

 Namely, the solutions of these problems lead to the solution of the 

corresponding exponential equations arising from (3.4.16).  

Problems arise that require not only upper but also lower grades of the 

system (3.4.3). Namely: 

(III) Reaching a tumor size larger than L . 

(IV) Finding the exposure time T such as to exceed the size of the tumor L  in a 

fixed time t*. 

To solve problems (I) – (IV), we will use the Lyapunov functionality 

(3.4.10) with a constant matrix V . This approach is based on obtaining 

difference-differential inequalities. 

The complete derivative of the functionality ( )v t  along the interchanges 

( )x t has the form 

 

( ) ,

( )
,

( )

T

T

v t C

x t V B
C

x t B V

 




= −

− −   
= =   

− −    . 

Comments. We believe that the system (3.4.3) and functionality (3.4.10) 

are such that the matrix C  is positively defined. 

Let us present a method of two-way evaluation of the functionality v(t). 
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Lemma 3.4.5. The functionality ( )v t  at the solutions ( )x t , i.e. 

( ) ( )tv t v x=  satisfies the difference-differential inequality: 

 

1 1

max max
1 min 1 min

min min

( ) ( ) ( ) 0, ,

( ) ( )
( ) 1 , ( ) 1

( ) ( )n

v t a v t b v t t

V V
a C b C

C C

 

 
 

 

+ + −  

   
= + = −   

  

 

 

The proof is given in [185, pp. 111-112].  

Lemma 3.4.6. The functionality ( )v t  along ( )x t  the solutions satisfies the 

difference-differential inequality 

 

2 2

min min
2 max 2 max

max max

0 ( ) ( ) ( ), ,

( ) ( )
( ) 1 , ( ) 1

( ) ( )

v t a v t b v t t

V V
a C b C

C C

 

 
 

 

 + + − 

   
= + = −   

    . 

 Proof. The same reasoning is used as in lemma 3.4.5. 

 Lemma 3.4.7. Differential equation 

( ) ( ) 0, 0, ( ) ( ), 0z az t bz t t z t t t  + + − =  = −     (3.4.15) 

 

 with coefficients 
1a a=  and 

1b b=  (
2 2,a a b b= = )) is asymptotically stable for 

any 0  . 

The proof is given in [185, p. 112].  

Lemma 3.4.8. If  0a b−   then the solution ( )z t  of equation (3.4.15) 

satisfies 

1

2
0

1

( ) , 0,

2 ( )

( ) ln ln

v t

z t z e t

a b
v

a b a b







−

 

−
=

− + −

    (3.4.16) 

and 
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2

1

*
2

0

2
2

( ) , 0,

2( ).

v t

v

z e z t t

v a b e





−

 

= +

    (3.4.17) 

The designation used here is (it is not the norm) 

*

0
min ( )t

s
z z t s

 −  
= +  

 

Let us use the Lyapunov function  1 2v te z  and the Razumikhin inequality 

1( ) ( )v tz t e z t−   to estimate its complete derivative. From here we get 

(3.4.16). The inequality (3.4.17) can be obtained in the same way. 

Let's enter the notation 

  

1 1

min
1

max min
min

max min

2 2
2 max min

max

4 ( )
,

( ) ( )
2 ( ) ln

( ) ( )

2 ( )(1 ) ( )(1 ,

( ) 1 ( ).

c

V C
c

V C

C e V e

V V

   




 


 

  

 

=
 +

+  
− 

 
= + + − 

 

= +

 

Theorem 3.4.2. Suppose that there is such a positively defined matrix V 

that the C matrix is positively defined as well. Then the solution ( )x t  of the 

initial problem (3.4.3) satisfies with t T    the following two inequalities: 

 

1

2

( )
4

0 2

*1 4
0 2

( ) ( ) ,

1
( ( ) ( ) ,

( )

A t

t

At

B
x t x V x e t T

A B

e x t A B Bx x e t T
V



 



 

 




−

−
− −

 +  
+

− +   
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Here 
*

2
x 

 and 2x   are the minimum and maximum values ( )x t  at 

t −   . 

The proof is given in [185, p. 114].  

At we t T    can obtain a similar result presented in the following 

theorem. 

Theorem 3.4.3. Suppose that there is a positively definite matrix V such 

that the C matrix is positively defined as well. Then the solution ( )x t  of the 

initial problem (3.4.3) satisfies the t T    two-sided inequalities 

 

1

2

4
0 2

*
4

0 2

( ) ( ) ,

1
( ) ,

( )

t

t

x t x V x e t T

x t x x e t T
V



 



 

 




−

−

 +  

−   

 

Example. To illustrate the results obtained, consider a two-dimensional

  stationary system for 0.25 =  

 
 

0

0

( ) ( ) ,0 5
( )

( ) , 5

Ax t B x t x t
x t

B x t x t





 + − −  
= 

− − 

  (3.4.18) 

0

1
( ) , 0

1
x t x t

 
= =  

 
, 

where 

21

2

( )
( ) ,

( )

x t
x t R

x t

 
=  
   

here 

0.1 0 5 1
.

0 0.2 3 2
A B

− − −   
= =   − − −   

 

We use the functionality of Lyapunov 



 169 

0

( ) (0) (0) ( ) ( )T Tv s V s ds


    
−

= +  , 

 

where 

0 0

0 1
V

 
=  
 

 

 

We get the following values 

 

min max

1 2

( ) 1.82 ( ) 14.48,

1.3046, 63.05, ( ) 1.25

C C

V

 

  

= =

= = =
 

 

According to Theorem 3.4.2, we have the following estimates: 

 

0.33 15.76( ) 1.01 1.12 , 5 ( ) 0.85 , 5t tx t e t x t e t


 − − +         

 

According to Theorem 3.4.3, there is: 

 

0.33 15.76( ) 1.01 1.12 , 5 ( ) 0.85 , 5.t tx t e t x t e t


− − +       

 

Now let's try to solve the problem of finding time t when the tumor size 

becomes smaller than the given 1.01L = . Inequalities need to be resolved 

 

0.331 1.12 1.01, 5te t−+     

 

We get 7.3t  . 
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3.5. Stability of solutions of the mathematical model of immune 

defense by G.I. Marchuk 

 

A model of the inflammatory process of an infectious nature is considered. 

In general, the mathematical model of immunity is described in the work [53]. It 

is universal and valid not only for the inflammatory process, but also for 

infectious infection of the body. The model takes into account the following 

factors determining the course of the process: 

I. Antigen population V multiplying in the body; 

II. Population of antibody cells (plasma cells) C ; 

III. Number of antibodies (immunoglobulins) F in the body; 

IV. Degree of organ damage m . 

The equations that determine the dynamics of the process are of the form 

 

(  )
dV

F V
dt

 = − , 

0( )   ( ) ( ) ( )c

dC
m V t F t C C

dt
    = − − − − ,   (3.5.1) 

 (   )f

dF
C V F

dt
   = − + , 

 m

dm
V m

dt
 = −  

 

with initial conditions at [ ,0]t  − : 

 

0 0 0( ) , ( ) , ( ) , ( ) 0V t V F t F C t C m t= = = = . 

 

 Here   is the antigen multiplication coefficient;   - a coefficient that 

determines the probability of neutralization of an antigen by an antibody;   - 
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the coefficient that determines the probability of antigen-antibody meeting; 
c  - 

the coefficient inverse of the life time of plasma cells;   - the rate of production 

of antibodies by one plasma cell; f  - a coefficient inversely proportional to the 

time of decay of antibodies;   - the number of antibodies required to neutralize 

one antigen;   - a coefficient that determines the rate of cell death due to the 

damaging effect of the antigen; 
m  - a coefficient that takes into account the 

speed of recovery of the damaged organ;   - delay phase (the time during which 

the formation of a cascade of plasma cells is carried out); ( )m  - continuous 

non-increasing function (0 ( ) 1m  ), which characterizes a violation of the 

normal functioning of the immune system due to significant damage to the target 

organ. 

The listed parameters are positive and are specific both for the type of 

antigen, and for the organ, and for a specific organism.   

The system of differential equations presented above has two states of 

equilibrium [53]. One of them is trivial, the other is denoted * * * *( , , , )V F C m . 

Having carried out the linearization of the system of ordinary differential 

equations (ZDR) in the vicinity of a point * * * *( , , , )V F C m , we get a linear 

system of ordinary differential equations with constant coefficients: 

 

* *1
1 1 3

*
* * * * * *2

1 3 2 4

* *3
2 3 3 1

4
1 4

( )
( ) ( ) ( ) ( ) C

f

m

dx
x F x V x

dt

dx d m
m F x t m V x t x V F x

dt dm

dx
x x V x F x

dt

dx
x x

dt

  


       

   

 

= − −

= − + − − +

= − − −

= −
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The characteristic polynomial of the resulting linear system ZDR is a 

quasipolynomial (exponential polynomial) of the fourth degree:  

 

4 3 2 2

1 2 3 4 1 2 3 0,a a a a b e b e b e       − − −+ + + + + + + =  

 (3.5.2) 

 

where 

 

* *

1 f m Ca F V     = + + − + +  

 

* * *

2

* * *

f C m C f m C m m C

f m f C

a F V V

V F F

            

      

= − + + − − + + + +

+ − + +
 

 

* *

3

* * * *

C f m C f C f m m C m

C m C m C f f m

a V V

V F F F

            

           

= − − − − − +

+ + + +
 

( )
*

2
* * * *

4

( )
C f m C m C f m

d m
a V F V F

dm


           = − − +  

 

* *

1 ( )b m V = −  

 

* * * *

2 ( ) ( )mb m V m V    = −  

 

* *

3 ( ) .mb m V  =  
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Study of the stability of the solutions of the immune defense model. 

When studying the placement of the roots of the equation based on an 

exponential polynomial (3.5.2), the following result will be used, proven in the 

paper [128] using the Rouche theorem [95].  

Lemma 3.5.1. For an exponential polynomial 

 

1

1

(0) 1 (0) (0)

1 1

(1) 1 (1) (1)

1 1

( 1) 1 ( 1) (1 1)

1 1

( , ,..., ) ...

[ ... ]

... [ ... ] ,

m

m

n n

n n

n

n n

m n m m

n n

P e e p p p

p p p e

p p p e







   

 

 

−− −

−

−−

−

−− − − −

−

= + + + +

+ + + +

+ + + + +

  

 

where 0( 1,2,..., )i i m  =  and ( )( 0,1,... 1; 1,2,..., )i

jp i m j n= − =  are 

constants, when changing,  the 
1 2( , ,..., )m    sum of the orders of zeros 

1( , ,..., )mP e e
 −−

in the open right half-plane can change when zero appears on 

the imaginary axis, or intersects it.  

It is clear that ( 0)iw w   the root of equation (3.5.2) will be if and only if: 

 

4 3 2 2

1 2 3 4 1

2 3

(cos sin )

( sin ) (cos sin ) 0

w ia w a w ia w a b w w i w

ib w cow i w b w i w

 

   

− − + + − − +

+ − + − = .

 

 

Separating the real and imaginary parts, we have: 

 

4 2 2

2 4 1 2 3

3 2

1 3 1 2 3

cos sin cos ,

sin cos sin .

w a w a b w w b w w b w

a w a w b w w b w w b w

  

  

− + = − −

+ = − − +
  (3.5.3) 

 

Adding the squares of both equations (3.5.3), we have: 
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8 2 6 2 4 2 2 2

1 2 2 4 1 3 3 2 4 4

2 4 2 2 2 2

1 2 3 1 3

8 2 6 2 2 4

1 2 2 4 1 3 1

2 2 2 2 2

3 2 4 2 1 3 4 3

( 2 ) ( 2 2 ) ( 2 )

2 , тобто

( 2 ) ( 2 2 )

( 2 2 ) ( ) 0 .

w a a w a a a a w a a a w a

b w b w b bb w

w a a w a a a a b w

a a a b bb w a b

+ − + + + + − + =

= + + −

+ − + + + − +

+ − − + + − =

 (3.5.4) 

 

Let's put 2z w= and enter the notation 

 

2 2 2

1 2 2 4 1 3 1

2 2 2 2

3 2 4 2 1 3 4 3

2 , 2 2 ,

2 2 , .

p a a q a a a a b

r a a a b bb s a b

= − = + + −

= − − + = −
 

 

Then equation (3.5.4) takes the form: 

 

( ) 4 3 2: 0.h z z pz qz rz s= + + + + =      (3.5.5) 

 

Statement 3.5.1. If 0s  , then equation (3.5.5) has at least one positive 

solution. 

The proof is given in [195, pp. 108-109].  

Statement 3.5.2. If 0s   equation (3.5.5) has positive real roots, then 

 

2 3/ 4 / 27 0  = +      (3.5.6) 

 

where  3 218 / 432 /8 / 4, 3 /16 / 2p pq r p q = − + = − +  

 

The proof is given in [195, p. 109]. 

In the case when 0  , among the roots of z1, z2, z3 equations 
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( ) 3 24 3 2 0
dh z

z pz qz r
dz

= + + + = , 

 

calculated according to Cardano's formulas, there is at least one, which is 

the local minimum ( )h z . 

Let's denote: 

argmin ( )

1,3

iz h z

i

 =

=
 

 

Statement 3.5.3. If 0s  , then equation (3.5.5) has positive roots if and 

only if 0 i ( ) 0z h z   . 

The proof is given in [195, p. 109].  

So, in the general case, we have: 

Lemma 3.5.2. If 0s  , then equation (3.5.5) has at least one positive root. 

If 0s  , then equation (3.5.5) has positive roots if and only if 

0  і ( ) 0z h z   . If 0 i 0s    , then equation (3.5.5) has no positive roots. 

Suppose that equation (3.5.5) has positive roots. Without limiting 

generality, let's assume that it has four positive roots, which we denote 

respectively z1, z2, z3, z4. Then equation (3.5.4) has four positive roots: 

 

1 1 2 2 3 3 4 4, , ,w z w z w z w z= = = =  

 

Let's mark 

 

3
( ) 1 3

2 2 2 2

2 3 1

1
arcsin 2( 1) ,

( )

1,2,3,4, 0,1,...

j k k
k

k k k

a w a w
j

w b w b b w

k j

  
 +
 = − + −
 + − 

= =
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Here   is the solution: 

 

2

2 3 1

2 2 2 2 2 2 2 2

2 3 1 2 3 1

sin , cos
( ) ( )

k k

k k k k

b w b b w

b w b b w b w b b w
 

− −
= =

+ − + −
 

 

Then, as follows from the second equation (3.5.3),  
kiw  are pairs of purely 

imaginary roots of equation (3.5.2) at 
( )

, 1,2,3,4, 0,1,...
j

k k j = = =   It is 

clear that  

( )lim , 1,2,3,4,j

k k

j

 =  =

→
 

 

So, let's denote  

 0

0 0

( ) ( )

0 0
1 4, 1
min ,

j j

k k k
k j

w w  
  

= = =  

 

Theorem 3.5.1. Suppose that all the major minors of the Hurvician 

 

1

3 2 2 1 1

4 3 3 2 2 1

4 3

1 0 0

1

0

0 0 0

a

a b a b a

a b a b a b

a b

+ +

+ + +

+

     (3.5.7) 

 

Positive.  

If 0 0s i   , then all the roots of equation (3.5.2) have negative real 

parts at all 0  . If 0s   or 0s  , 0 ( ) 0z i h z   , then all the roots of 

equation (3.5.2) have negative real parts at 
0[0, )  . 

The proof is given in [195, pp. 110-111].  
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The result presented above can be reformulated in terms of the coefficients 

of the immune defense model, thus obtaining a sufficient condition of resistance.  

Theorem 3.5.2. Suppose that the coefficients of the immune defense model 

(3.5.1) satisfy the conditions of theorem 3.5.1.   

Then, if 0 0s i   , then the equilibrium state * * * *( , , , )V F C m   of the 

ZDR system (3.5.1) is absolutely stable (asymptotically stable for all 0  ). If 

0s   or 0s  , 0 i ( ) 0z h z   , then the equilibrium state * * * *( , , , )V F C m   

of the ZDR system (1) is asymptotically stable at 
0[0, )  . 

The proof follows from theorem 3.5.1 and the stability theorem at the first 

approximation [28]. 

Examples. With the help of the developed computer program, a 

quantitative study of the inflammatory process was carried out in the case when:  

42, 0.8, 10 , 0.5, 0.17, 0.17, 10, 0.12c f m       = = = = = = = = . 

1, 0.1
( )

(1 ) /(10/9),0.1 1

m
m

m m



= 

−  
 

If [ ,0]t  −  the following initial conditions are true 

6( ) max(0, 10 ), ( ) 1, ( ) 1, ( ) 0V t x C t F t m t−= + = = = .   

The simulation shows that the time of reappearance of the inflammatory 

process and the degree of its activity depend on the coefficient  , which is 

consistent with experimental data. 

Let's put 0.1, 10 = = . We have a case when 
0   (Fig. 3.5.1), which 

corresponds to a stable solution 
* * * *( , , , )V F C m . 
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Rice. 3.5.1 

The following examples illustrate cases where 
0  . So, for example, let's 

put 0.4, 10 = =  (Fig. 3.5.2), 2, 10 = =  (Fig. 3.5.3). There is a periodic 

solution (chronic form of the pathological process), which turns into an unstable 

one (acute form of the pathological process with a fatal outcome).  

 

 

 

Rice. 3.5.2 
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Rice. 3.5.3 

 

 

3.6. On stability in the model of immune defense, taking into account 

the dysfunction of the target organ. Lyapunov's method of degenerate 

functionals 

 

This subsection will study the issues of stability of the simplified immune 

response system by G.I. Marchuk [53]: 

 

( ) ,

( ) ( ) ( ) ( ),

( ) ,

c

f

m

dV
F V

dt

dC
m V t F t C C

dt

dF
C V F

dt

dm
m

dt

 

    

  

 

= −

= − − − −

= − +

= −

   (3.6.1) 
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The biological content of the coordinates and coefficients of the system is 

discussed in subsection 3.5. In the paper [53], sufficient conditions for the 

asymptotic stability of the system are established (3.6.1) in the absence of the 

influence of the damaging effect of the organ on the immune response, i.e. when 

( ) 1m  . In this case, the system (3.6.1) takes the form:  

 

( ) ,

( ) ( ) ( ),

( ) ,

c

f

m

dV
F V

dt

dC
V t F t C C

dt

dF
C V F

dt

dm
V m

dt

 

   

  

 

= −

= − − − −

= − +

= −

    (3.6.2) 

 

Here C  is a constant level of plasma cells in a healthy body. 

 It is established in [53] that the system (3.6.2) has two states of 

equilibrium: 

 

And. 
*

1 1 1 10, , , 0
f

C
V C C F m




= = = =      (3.6.3) 

II. 
( )
( ) ( )

2

2 2 2 1 2, , ,
C f f C

C C m

C C
V C F m V

         

         

− −
= = = =

− −

 (3.6.4) 

 

The study was carried out on the basis of linearization and the study of the 

placement of zeros of a characteristic quasipolynomial [53, 169, 185]. Below are 

the main results. 
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Theorem 3.6.1. [53] A sufficient condition for the asymptotic stability of 

the steady state (3.6.3) is the fulfillment of the inequality  

 

1F  .      (3.6.5) 

 

Theorem 3.6.2. [53] A sufficient condition for steady-state stability 

(3.6.4) is the 1C    fulfillment of inequality 

 

0
f d

b g f
a g




−
  − −

−
     (3.6.6) 

 

Here , , , ,a b d g f  are the coefficients of the corresponding characteristic quasi-

polynomial.  

This subsection is a continuation of subsection 3.5 and is devoted to the 

application of the method of degenerate functionalities of Lyapunov [102] to the 

study of system stability (3.6.2). It should be noted that it is distinctive that this 

method will establish the conditions for the global stability of the system (3.6.1) 

in the general case, taking into account the effect of the damaging effect of the 

organ ( )m  on the immune response.  

It should be noted that for the initial nonlinear system (3.6.1) it is 

theoretically possible to exist a state of equilibrium other than (3.6.3), (3.6.4) – it 

depends on the type of function ( )m . The subsection will establish the 

conditions for the global stability of equilibrium states, which we will 

conditionally designate as ( )* * * *, , ,V C F m . 

Degenerate functionalities of Lyapunov. We will follow the definition of 

the Lyapunov functionality introduced in [80] for the system with a delay 
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( )
( ) ( )

0
, ,t t

dx t
f t x x s

dt
= =     (3.6.7) 

 

where : nf R C R →  is the continuous functionality and ( ),0 0f t = . 

Definition 3.6.1. The functionality is :V R C R →  called the functionality 

of the Lyapunov system (3.6.7) if: 

 

(i)  ( )( ) ( ) ( )0 ,u V t v    ; 

(ii), ( ) ( )( ), 0V t w  −  

 

where ( ) ( ) ( ), , :u s v s w s R R+ +→  are continuous and non-decreasing, 

( ) ( )0, 0u s v s   at 0s   and ( ) ( ) ( )0 0 0 0u v w= = = .  

For the first time, the concept of degenerate Lyapunov functionals was 

introduced in the work [99] when studying the asymptotic stability of the trivial 

solution of the next non-autonomous linear system with a delay 

 

( ) ( ) ( )
2

1

0, 1,2.ij j ij

j

x t a t x t i
=

+ − = =     (3.6.8) 

 

As noted in [99], it is usually difficult to find or construct Lyapunov 

functionals with negatively defined complete derivatives on the solutions of the 

system. The approach of combining the principle of invariance with conditions 

of the Razumikhin type also seems to be difficult to apply to equations of the 

Lott-Voltaire type. To overcome such problems, K. Gopalsamy [99] uses the 

functionality ( ) ( )( )1 2 1 2 1 2, ,V x x V V x x= + , where 
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( ) ( ) ( ) ( )
2

2 2

1 1 2

1 1

,
ij

t

i ij ij j
t

i j

V x x x t a s x s ds



−

= =

 
= + + 

 
      (3.6.9) 

 

and some ( )2 1 2, 0V x x  .  

With the help of the functionality V  and lemma 1.3.2 (Barbalat's lemma), 

K. Gopalsami was able to obtain the conditions of asymptotic stability (3.6.8). 

As an example, he obtained some sufficient conditions for the global asymptotic 

stability of the positive equilibrium state of the next system of competition with 

a delay 

 

( ) ( ) ( )
2

1

, 1,2.i i i ij j ij

j

N t N t r b N t i
=

 
= − − = 

 
    (3.6.10) 

 

The results were also extended to a generalized form (3.6.10), including 

continuously distributed delays.  

It can be noted that the functionality (3.6.9) does not satisfy condition (i) in 

the definition of the Lyapunov functionality. This type of functionals is called 

"degenerate" Lyapunov functionals [99].  

A more complete overview of the application of Lyapunov's method of 

degenerate functionals is given in [196]. Here we will only give the definition of 

degenerate Lyapunov functionals, introduced in [99]. 

 

Definition 3.6.2. A functional is :V R C R →  called a weakly degenerate 

functional for (3.6.7) if for all large t  (say at t T  for some 0T  ) 

(i) there is a continuous and non-decreasing function 

( ) ( ): , 0 0v s R R v+ +→ =  and ( ) 0v s   at 0s   such  that ( ) ( )0 ,V t v   ; 
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(ii) there is a continuous and non-decreasing function 

( ) ( ): , 0 0w s R R w+ +→ =  and ( ) 0w s   at 0s   such  that 

( ) ( )( )' , 0V t w  − . 

If instead of (ii) is 

(iii) there is a continuous and non-decreasing function 

( ) ( ): , , 0 0mw s R R m n w+ +→  =  and ( )1, , 0mw s s   at ( )1, , 0ms s   such  

that ( ) ( ) ( )( )1' , 0 , 0mV t w   − , 

then such a functional V  is called strictly degenerate Lyapunov 

functionality for (3.6.7). 

Degenerate Lyapunov functionals without taking into account the 

influence of the action of the damaged organ. Let's rewrite the system (3.6.2) 

in the form of: 

 

   * * * *( )
log ( ) / log ( ) log ( ) ( ( ) );

( )

d d V t
V t V V t V F F t F

dt dt V t
    = − = − − = − −   

 * * * *

* * *

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ;

c c

c

d
C t C V t F t C C V F C C

dt

V t F t V F C t C

     

   

− = − − − − − + −

   = − − − − −   

 * * * * *( ) ( ) ( ) ( ) ( ) ;f

d
F t F C t C F t F V t F t V F

dt
       − = − − − − −       

 * * *( ) ( ) ( )m

d
m t m V t V m t m

dt
    − = − − −        (3.6.11) 

 

The next stability condition will be established using a quadratic 

functional. On the basis of functionals of this type, stability conditions are 

obtained, which are called "medium-diagonal dominance". 

 

Theorem 3.6.3. Suppose that: 
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(i) *F =  

(ii) the parameters of the system (3.6.2) are such that there are positive constants 

, , ,a b c d at which the matrix  

 

0 0 / 2 0 0

0 2 0 0

/ 2 2 0 0

0 0 2 0 0

0 0 0 0

0 0 0 0

c

f

m

c

a b a

b b b
U

c c

b d

a d

 

  

   

 





− 
 

−
 
 − − −

= − 
− 

 −
 

−  

 

 

positively defined. Then all solutions (3.6.2) corresponding to the integral initial 

conditions satisfy 

 

( ) *lim
t

V t V
→

= , ( ) *lim
t

C t C
→

=  ( ) *lim
t

F t F
→

=  ( ) *lim
t

m t m
→

=

 (3.6.12) 

 

The proof is given in [196, p. 157-158].  

 

The effect of the action of the damaged organ on the immune 

response. Next, consider a system (3.6.1) with    : 0,1 0,1 → the function , 

which is a non-increasing function of the performance of immunological organs. 

Let's introduce the replacement of variables: 

 

1 *
log ,

V
x

V

 
=  

 
 *

2 ,x C C= −  *

3 ,x F F= −  *

4x m m= − . 

 

Hence: 1*( ) ,xV t V e=  
*

2( )C t x C= + , 
*

3( )F t x F= + , . 
*

4( )m t x m= +   
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Let's mark  

 

( )( ) ( ) ( )( )* *

4 4Z x t m x t m = − + . 

 

Through  
max max min min, , ,V F V F  let's designate the maximum and minimum values 

of antigen and antibody concentrations, respectively. These values can be 

established experimentally.  

In contrast to the work [53], where the model parameters  ,   were assumed 

(3.6.5), we will consider a wider area  

 

maxF   (3.6.13) 

 

Lemma 3.6.1. The function ( )( )4Z x t  has the following properties: 

(and) ( )( )4 1Z x t   and ( )( )40 1Z x t   at ( )4 0x t  , ( )( )41 0Z x t−    at 

( )4 0x t  ; 

(ii). ( )( ) ( )4 4 0Z x t x t   

 

Using the above designations, the system (3.6.1) can be rewritten in the form of: 

 

( )( ) ( )

( )

1 1

1

1

1 3

( ) ( )* * * * *

4 3 3

2
* * *

2

( )* * * *

3 2 3 3

( )*

4 4

( ) ( ),

( ( ) ) ( ( ) )
( )

( )

;

( ) ( ) ( ) ( ( ) ) ,

( ) 1 ( )

x t x t

C

x t

f

x t

m

x t x t

Z x t V e x t F m V e x t F
x t

m V F

x t

x t x t x t V e x t F V F

x t V e x t

 



  






  

 

− −

= −

 − − + + − +
= − 

 − 

−

 = − − + − 

 = − − 

 (3.6.14) 
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Lemma 3.6.2. At the solutions of the system (3.6.14) there is an 

inequality: 

 

( ) ( )( )
( )

( ) ( )( ) ( )1 1

*
2 *

3 4 42 *

x t x tF
x t Z x t Ae Z x t Be F

m

 




− − − −
−  + + −  (3.6.15) 

 

where 

 

( )
( )

*

*

* *

C C C
A F

m V





−
= + , 

( )
( )
( )

**

* 2 * *

C C CF
B

m m V



 

−
= + . 

 

The proof is given in [196, p. 159].  

 

Lemma 3.6.3.  At the solutions of the system (3.6.14) there is an 

inequality 

 

( )( ) ( )
( ) ( )* * * *

max max
*

4 min

min min

:

Cm F V V F C C
Z x t m Z

V F





+ + −

 − =  (3.6.16) 

 

The proof is given in [196, p. 160].  

 

Lemma 3.6.4.  Suppose that the inequality (3.6.13) takes place. Then, at 

the solutions of the system (3.6.1), an estimate is performed: 

 

max( )

max

( )
( ) 1

t

F

t

V t
V s ds e

F

  


 

−

−

  − −   (3.6.17) 

 

The proof is given in [196, p. 160].  
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Lemma 3.6.5.  For solutions (3.6.1) there is an assessment: 

( ) ( )V t V t e  −−   

 

The proof is given in [196, p.160].   

 

Let's enter the functionality: 

( )
( )4

1 4

0

( ) ( )

x t

W x t Z u du=  . 

 

Then we have 
1 4( ) 0W x   at the junctions (3.6.11): 

 

1( )*2
4 4 4 4 4

( ( ))
( ( )) ( ) ( ( )) 1 ( ( )) ( )x t

m

dW x t
Z x t x t Z x t V e Z x t x t

dt
  = = − −  .  

 

Because 

 

1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )

11 1 ( ) 1 ,

t

x t x t x t x t x s x t

t

e e e e e x s ds e  



− − −

−

     − = − + − = + −       

 

then 

 

1 1

1 1

( ) ( )*2
4 3 4 4

( ) ( )* *

4 3 4 4 4

( ( ))
( ( )) ( ( )) 1 ( ( )) ( )

( ( )) ( ) ( ( )) 1 ( ( )) ( )

t

x s x t

m

t

t

x s x t

m

t

dW x t
Z x t V e x s ds e Z x t x t

dt

V e Z x t x s ds Z x t V e Z x t x t









  

  

−

−

−

−

 
 = − + − − =  

 

 = − + − − 





 

 

Using the inequality ( )2 21

2
ab a b + , we come to the next 
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1 1

1

( ) ( )* 2 22
4 3

( )*

4

4 4

( ( )) 1
( ( )) ( )

2

( ( )) 1

( ( )) ( )

t t

x s x s

t t

x t

m

dW x t
V e ds Z x t e x s ds

dt

Z x t V e

Z x t x t

 









− −

−

   
 + +  

   

 + − 

−

 

 

 

Let's define the functionality: 

 

1( )* 2

2 3

1
( ( )) ( )

2

t t

x s

t v

W x t V e x s dsdv



−

=    

 

Have: 

 

1 1

1 1

( ) ( )* 2 22
3 3

( ) ( )* 2 2

3 3

( ( )) 1
( ) ( )

2

1
( ) ( )

2

t t

x s x t

t t

t

x s x t

t

dW x t
V e x s ds e x t dv

dt

V e x s ds e x t

 





 

− −

−

 
= − + = 

 

 
= − + 

 

 



 

 

Away: 

 

1 1

1

( ) ( )* 2 2

1 2 4 3

( )*

4 4 4

1
( )( ( )) ( ( )) ( )

2

( ( )) 1 ( ( )) ( )

t

x s x t

t

x t

m

d
W W x t V e ds Z x t e x t

dt

Z x t V e Z x t x t





 

 

−

−

   
+  + +  

   

 + − − 


 

Next, we will evaluate 1( )* ( )

t t

x s

t t

V e ds V s ds
 − −

=   by virtue of lemma 3.6.4. We 

have: 
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( )( ) ( )max

1

( ) 2 2

1 2 4 3

max

( )*

4

4 4

1 1
( )( ( )) ( ) ( 1)

2

( ( )) 1

( ( )) ( )

F

x t

m

d
W W x t V t e Z x t x t

dt F

Z x t V e

Z x t x t

  



 
 





−

−

   
+  − + +  

−   

 + − − 

−

 

Let's introduce functionality 

 

1( )

3 1

0

( ( )) 1

x t

sW x t e ds

−

 = −  . 

 

Then: 

 

1( )

3 1 3( ( )) ( ) 1x td
W x t x t e

dt

  − = − − −  . 

 

Let's define the functionality of Lyapunov as follows: 

 

1 4 2 1 3 3 1( ( )) ( ( )) ( ( ), ( )) ( ( )).W x t W x t W x t x t W x t= + +  

 

Here 0   it is unknown so far. 

Then, by virtue of the previous calculations: 

 

( )( ) ( )

( )

max

1 1

( ) 2 2

4 3

max

( ) ( )*

4 3

4 4

1 1
( ( )) ( ) ( 1)

2

( ( )) 1 1

( ( )) ( )

F

x t x t

m

d
W x t V t e Z x t x t

dt F

Z x t V e x t e

Z x t x t

  

 

 
 

  



−

− −

   
 − +  

−   

   + − − − −   

−

 (3.6.18) 

 

Using in (3.6.18) the inequality of the lemma 3.6.2, we have: 
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( )( ) ( )

( )( )
( )

( ) ( )( ) ( )

max

1

1 1 1

( ) 2 2

4 3

max

( )*

4

*
( )2 *

4 42 *

4 4

1 1
( ( )) ( ) ( 1)

2

( ( )) 1

1

( ( )) ( )

F

x t

x t x t x t

m

d
W x t V t e Z x t x t

dt F

Z x t V e

F
Z x t Ae Z x t Be F e

m

Z x t x t

  



  

 
 








−

−

− − − − −

   
 − +  

−   

 + − 

 
  − + + − −  

 

−

 

 

Using the inequality of the lemma 3.6.5, we have: 

 

( )
( )( ) ( )

( ) ( )( ) ( )( ) ( )( )
( )

max

1

1 1 1

*
( ) 2 2

4 32 * *
max

( )*

4

*
( )* 2

4 4 2 *

4 4

max

1 1
( ( )) ( ) ( 1)

2

( ( )) 1

1

( ( )) ( )

1 1
( )

2

F

x t

x t x t x t

m

d F
W x t V t e e Z x t x t

dt F m V

Z x t V e

F
Ae Z x t Be F e Z x t

m

Z x t x t

V t
F

   



  

  
  



 







− −

−

− − − − −

   
 − − +  

−    

 + − 

 − + − − + 

− 


− ( )

( )( ) ( )

( )

max

*
( ) 2 2

4 32 * *

* * *
* *max min

* * 2 *
max max

4 4

( 1)

1 1

( ( )) ( )

F

m

F
e e Z x t x t

m V

V V V V F
V A B F

V V V V m

Z x t x t

    
 

  




− −
   

− − +  
    

    
+ − − − − − +    

    

−

 (3.6.19) 

 

Let's choose 0   one that: 

 

( )

* max

*

* * *
* min

* 2 *
max max

1

1

V
V

V

V V V F
A B F

V V V m








 
−  

    
− − − −       
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In this case, from (3.6.19) we get: 

 

( )
( )( ) ( )max

*
( ) 2 2

4 32 * *

max

4 4

1 1
( ( )) ( ) ( 1)

2

( ( )) ( )

F

m

d F
W x t V t e e Z x t x t

dt F m V

Z x t x t

     
  



− −
   

 − − +  
−    

−

 

 

From the property (ii) for ( )( )4Z x t  we have: 

 

( )
( )( ) ( )max

*
( ) 2 2

4 32 * *
max

1 1
( ( )) ( ) ( 1)

2

Fd F
W x t V t e e Z x t x t

dt F m V

     
  

− −
   

 − − +  
−    

 (3.6.20) 

 

Let's choose 0    such that  

 

 
( )

max

*
( )

2 * *
max

1
( 1)

F F
e e

F m V

   
  

− −− 
−

.     (3.6.21) 

 

and to 

 

( )
( )max

2

min

* 2
*

( )
max

2 * *

max

1
( 1)

F

Z

F F Fe e
Fm V

  




 

−−


−− −

−

   (3.6.22) 

 

Then on the right side (3.6.20) there is a negatively defined quadratic form of 

the arguments ( )( ) ( )4 3,Z x t x t . So, W  - strictly degenerate Lyapunov 

functionality. 

Applying the asymptotic stability theorem, we get the following result. 
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Theorem 3.6.4.  Suppose that: 

(i) the inequality is fulfilled (3.6.13); 

(ii) 

( )

* max

*

* * *
* min

* 2 *
max max

1

0

1

V
V

V

V V V F
A B F

V V V m






 
−   

    
− − − −       

; 

(iii) the delay 0   is finite and satisfies the inequalities (3.6.21), (3.6.22). 

Then the positive state of equilibrium of the system (3.6.1) is asymtotically 

stable for some approximate initial conditions.  

 

 

3.7. Stability of the generalized model of Gompertz dynamics 

 

The model described by equations (1.4.4)-(1.4.6) on the semi-axis 
0t t  

with initial conditions (1.4.7)-(1.4.9) in the absence of treatment ( ( ) 0c t  ) is 

considered: 

 

( )
( ) ( ) ( )

( ) ( )

, , ,

1 1

1

, 1, .

i

i s i s i s i s

i i i

M M
P

i P P P C P P P P i

s s

i C P P

dL t
L t L t G

dt

L t L t i M

   

 

= =

  
= − − + + +  

  

+ − =

 
 (3.7.1) 

 

( )
( ) ( )

( ) ( )

,

1

, 1, .

i

i s i s

i i i

M
C

i P P C P i

s

i C C C

dL t
L t L t G

dt

L t L t i M

 

 

=

 
= + − 
 

− − =


    (3.7.2) 

 

( )
( )

( )
( ) ( ) ( ) ( ), ,

1 1

ln ,
s i s s i s

M M
i i

i i P N P i C N C i

s si

dN t
N t L t N t L t N t

dt N t


  

= =

= − −  (3.7.3) 

Put: 
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( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )

1 1

1 1

1

,..., , ,...,

,..., , ,..., ln

M M

M M

i i

i P P C C

L
P P C C M

P C

i

G L t L t L t L t

G L t L t L t L t

L t L t




=

=

 
 
 = =
  +  
 


. (3.7.4) 

Here 0   is the rate of development of the  disease, 0L   is the upper 

limit of the total number of cancer cells. 

Statement 3.7.1. Populations for which at some point in time 
0t t : 

( ) ( )
1

s s

M

P C L

s

L t L t 
=

 + =      (3.7.5) 

(i.e 0G = . ) is not a state of equilibrium of the system (3.7.1)-(3.7.4).  

The proof is given in Appendix A.3.  

Let's enter the notation of matrices and vectors: 

 ,
, 1,i jPP P P

i j M
 

=
= ,    ,

, 1,i jPC P C
i j M

 
=

= ,  

1 1

1 1

M MR 

 
 

 = 
 
 
 

 is a matrix, all 

elements of which are units, ( ) 21...1
T M

Me R=   is a vector, all elements of 

which are units, 

( ) ( ) ( ) ( )
1 11 1,..., , ,..., , ,..., , ,..., ,

M M

T TT T

M M P P P C C C           = = = =

 - unit matrix. 

Consider a matrix of block form: 

 

( )( )

( ) ( ) 2 1 2

T

PP PC PP P

T M M

PC C

T

M

I I IG G I I

I G I R

e

     

    + 

 − − +  + −
 
 + − += 
 
 
 

C

 (3.7.6) 

and vector 
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2 1

0

0
M

G

L

b R

e 

+

−

 
 
 

=  
 
 
 

 

Statement 3.7.2. Let the coefficients of the system (3.7.1)-(3.7.4) be such 

that there is a constant 0G   such that 2rank M=C . Then for a given  there 

0G   is a single state of equilibrium ( )* * * 2, M nE L N R +=  , where 

( )
1 1

* * * * * 2,..., , ,...,
M M

M

P P C CL L L L L R=  , ( )* * * 2

1 ... n

nN N N R=  , the components of 

which can be found from the equations: 

 

*L b=C      (3.7.7) 

* * *

, ,

1

1
exp

s i s s i s

M

i i P N P C N C

si

N L L  
 =

 
 = − +  

 
   (3.7.8) 

 

The proof is given in Appendix A.3.  

The study of the stability of the state of equilibrium *E  (3.7.1)-(3.7.3) can 

be carried out using the Lyapunov vector function: 

 

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

( )

( )

1 1

* *

1

2

* *
1

ln 1

, ,

ln 1

s s s s

i i

M M

P C P C

s s

L L

P C j

n
j j

j

j j j

L t L t L t L t

a
v t

v L t L t N t
v t

N t N t
b

 

 

= =

=

  
   + +     

 − − 
    

= =       
   
  

− −  
    

 


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3.8. Stability of solutions of a simplified model of antitumor immunity  

 

The following partial case of the system (1.6.1)-(1.6.5) is considered: 

 

( )
( )

( )
( ) ( )ln L

L L

dL t
L t F t L t

dt L t


 = − ,   (3.8.1) 

( )
( ) ( ) ( ) ( )0C

dC t
m L t F t C C

dt
    = − − − − , (3.8.2) 

( )
( )( ) ( )f f L

dF t
b C L t F t

dt
 = − + ,   (3.8.3) 

( )
( ) ( )m

dm t
L t m t

dt
 = − ,    (3.8.4) 

 

That is, the process of maturation of plasma cells in the bone marrow is not 

taken into account.  

The system of differential equations presented above has equilibrium 

states. Having * * * *( , , , )L F C m  carried out linearization of the system of ordinary 

differential equations (3.8.1-3.8.4) in the vicinity * * * *( , , , )L F C m  of a point, we 

get a linear system with constant coefficients: 

 

* *1
1 1 3*

*
* * * * * *2

1 3 2 4

* *3
2 3 3 1

4
1 4

ln 1

( )
( ) ( ) ( ) ( )

L
L L L

C

f f L L

m

dx
x F x L x

dt L

dx d m
m F x t m L x t x L F x

dt dm

dx
b x x L x F x

dt

dx
x x

dt


  


       

  

 

 
= − − − 

 

= − + − − +

= − − −

= −
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In the case when ( ) 1m  , then the characteristic polynomial of the 

resulting linear system is a quasipolynomial (exponential polynomial) of the 

fourth degree:  

 

4 3 2 2

1 2 3 4 1 2 3 0a a a a b e b e b e       − − −+ + + + + + + =  (3.8.5) 

 

where 

 

*

1 L f C ma L   = + + +  

( ) ( )* * *

2 *
ln 1L

C L f L L m L f Ca L L L
L


        

 
= + − − + + + 

 
 

( )* * *

3 * *
ln 1 ln 1L L

L C L m C L f L La L L L
L L

 
        

    
= − − + + − −    

    
 

*

4 *
ln 1L

L C L ma L
L


   

 
= − − 

 
 

*

1 fb b L= −  

* *

2 *
ln 1L

L f f mb b L b L
L


   

 
= − − 

 
 

*

3 *
ln 1L

L f mb b L
L


  

 
= − 

 
 

When studying the placement of the roots of the equation based on the 

exponential polynomial (3.8.5), the following results were obtained, proved in 

paragraph III.5 (theorems 3.5.1 and 3.5.2) for the simplified model of the 

immune system of G.I. Marchuk using Rochet's theorem [126].  

For the purpose of formulation, we will enter the designation 

 

2 2 2

1 2 2 4 1 3 1

2 2 2 2

3 2 4 2 1 3 4 3

2 , 2 2 ,

2 2 , .

p a a q a a a a b

r a a a b bb s a b

= − = + + −

= − − + = −
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and consider the equation: 

 

( ) 4 3 2 0.h z z pz qz rz s= + + + + =        (3.8.6) 

At the same time, we will also use the designations introduced in III.5. 

The result proven in paragraph III.5 can be reformulated in terms of the 

coefficients of the antitumor immunity model, thus obtaining a sufficient 

condition of resistance.  

Theorem 3.8.1. Suppose that the coefficients of the antitumor immunity 

model (3.8.1)-(3.8.4) satisfy the conditions of theorem 3.5.1. 

Then, if 0 0s i   , then the equilibrium state * * * *( , , , )L F C m   of system 

(12)-(15) is absolutely stable (asymptotically stable for all 0  ). If 0s   or 

0s  , 0 ( ) 0z i h z   , then the equilibrium state * * * *( , , , )L F C m   of system 

(12)-(15) is asymptotically stable at 
0[0, )  . 

The proof follows from theorem 3.5.1 and the stability theorem at the 

first approximation. 

 

Conclusions. 1. A qualitative analysis of one third-order nonlinear system 

with a time delay with the appearance of the right parts close to the general one 

has been carried out. The system can be considered as a generalization of the 

immunological model of the antigen-antibody-plasma cell. Sufficient conditions 

for the stability and instability of its trivial solution have been obtained. In the 

case of stability, an exponential estimate has been built in an explicit form. In 

the proofs and constructions, the method of Lyapunov-Krasovsky functionalities 

has been used.  

2. The conditions for the stability of stationary states of the bone tissue 

reconstruction model based on the functions of the Lyapunov logistic type are 

indicated.  
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3. The conditions for the stability of the equilibrium states of the toxic 

colitis system are obtained, and they are illustrated on computer programs. 

4. The application of equations with a delay with a piecewise continuous 

right part in the theory of cell response to radiation is substantiated. Exponential 

estimates of solutions have been found that allow solving problems of 

controlling the time of irradiation, as well as finding the time required to achieve 

the desired concentration of a substance in the cell. 

5. A method for studying the stability of the model of immune protection 

of G.I. Marchuk by studying the zeros of a characteristic polynomial - a 

quasipolynomial of the fourth degree has been developed. 

6. A method of constructing degenerate Lyapunov functionals in the study 

of the stability of the immune defense model of G.I. Marchuk is presented. The 

results are presented both without taking into account the influence of the action 

of the damaged organ on the immune system ( ) 1m  , and in the presence of 

such an influence. Comparing with the results of previous work, which was 

performed on the basis of excellent methods [53], the conditions of stability for 

a wider range of parameters 
maxF   (as opposed to the area of *F  ).  In 

this case, additional conditions are imposed on the amount of delay. The 

prospect of the proposed method is the study of the immune defense system with 

a continuously distributed delay.  

7. The ways of studying the stability of the generalized model of 

Gompertz dynamics are indicated. 

8. Sufficient conditions for asymptotic stability of the equilibrium state of 

the antitumor immunity model in terms of the coefficients of the characteristic 

quasipolynomial have been obtained. 

These results were reflected in monographs [170, 185], a number of 

journal articles [36, 139, 141, 143, 156, 159, 160, 169, 175, 195, 196, 210, 211] 

and conference proceedings [138, 140, 144, 152, 167, 207].  
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