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SECTION 2 

PROBLEMS OF PARAMETER IDENTIFICATION IN MODELS 

OF PATHOLOGICAL PROCESSES 

 

 

2.1. Problems of estimating parameters in Hilbert space for differential 

equations under uncertainty conditions 

 

When modeling a number of processes of living nature [51,57,185], 

problems arise to find estimates of the parameters of systems that can be elements 

of some functional spaces. Such models include delayed differential equations, 

integro-differential equations, the theory of which is presented in papers [80,99]. 

The results on the identification of system parameters are presented in monographs 

[16, 56].  

The purpose of this study is to establish the conditions for the existence of 

solutions to problems of identifying parameters given in abstract Hilbert spaces, as 

well as to build constructive algorithms for finding them.  

The issue of the existence of optimal a posteriori estimates. Let be an 

observable vector-function ( ) my t R of the form 

 

 ( ) ( )( ) ( ), ,y t h x t t t = + , 
0t t T      (2.1.1) 

with some previously unknown parameters  , and vector-functions ( )v t . Suppose 

that a vector   belongs to some set G    of Hilbert space  H , and a vector function 

( )t  belongs to a set G    of Hilbert space  ( )2 0 ,L t T , having the form 

( )
0

: , 1

T

t

G v v t dt

  
=   
  
 ,     (2.1.2) 
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where  ( ),v t  is a continuous, non-viablefunction on  0[ , ]mR t T , satisfying the 

condition 

( )
2

,v t C v  ,      (2.1.3) 

where C  is some constant. 

If ( ),h x t  is a continuous on  a 0[ , ]nR t T  function and such that there exists 

a constant 
1C  such that  

 ( ) 1,h x t C x ,      (2.1.4) 

a ( ),x t   belongs to the set ( )2 0 ,L t T  G  , then the posteriori set of possible 

values of the parameter      is defined as follows 

1yG G G= , 

where 

( ) ( )( )( )
0

1 : , , , 1

T

t

G y t h x t t t dt 
  

=  −  
  

    (2.1.5) 

In the problems of a posteriori assessment, the following two problems are 

important. 

1. Describe the set yG .      

2. Determine the "optimal" element from the set  yG . 

The successful solution ofthe second problem depends on the criterion 

according to which we will look for the "optimal" element. In this work, we will 

choose a criterion of the form  

( ) ( ) ( )( )( )
0

, , ,

T

t

J y t h x t t t dt =  − ,    (2.1.6) 

and we will determine the optimal value from the condition 

( ) ( )ˆinf
G

J J


 


= .      (2.1.7) 

It is clear that if such elements ̂  exist, then they will fall into the set yG . 
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Statement 2.1.1. Suppose that either the set G  is a compact, a ( ),x t   is a 

continuous function of its arguments, or G  is a bounded weakly closed set, the 

functional ( ) ( ) ( )( )( )
0

1 , ,

T

t

J y t h x t t t dt =  −  is weakly semi-continuous at the 

bottom, and ( ), nx t   weakly coincides in ( )2 0 ,L t T  to , ( )0,x t  if 
n  it weakly 

coincides to 
0  in . H  

Then there is an optimal a posteriori assessment. 

The proof is given in Appendix A.2.  

Consequence. Let  ( ) ( ),h x t H t x= , ( ) ( )( ), ,x t Q t x x = , where ( )H t  is a 

matrix with continuous elements, and is ( )Q t  a positively defined matrix whose 

elements are continuous on 
0[ , ]t T . Then there is an optimal a posteriori evaluation. 

Note 2.1.1. The condition of the boundness of the set G  can be replaced by 

the condition 

( )lim J



→

=  . 

Remark 2.1.2.  If  ( )J   it is strongly convex by  , then the optimal 

posteriori assessment is the only one. 

 

Let us consider further the case when ( ),x t   isthe solution of the 

differential equation:  

 

( ) ( )( )
0

, , , , ,

t

t

dx
f t x g t s x s ds

dt
 = +      (2.1.8) 

( )0 0x t x=       (2.1.9) 

 

where ( ) nx t R , 
1H , . 

2H  Here 
1 2,H H  are abstract Hilbert spaces.   

Let's enter the notation 
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( ) ( ) ( )( )
0

1 , , , , , , ,

t

t

f t x f t x g t s x s ds  = +  ,  





 
=  
 

.   

 

Suppose that the values of the parameters   and   - are unknown, and only 

their a priori sets -- G  and G  respectively are given. 

 

To establish the conditions for the existence of a posteriori estimates in 

Hilbert space, let us consider several partial cases (2.1.8), (2.1.9).  

The general case of a linear system. Consider the following system 

 

( )
( ) ( )

( )0 0

,
dx t

A t x t
dt

x t x




=

 =

    (2.1.10) 

where ( ) ( )1 [0, ], nx t C T R , ( ) ( ) ( )1, :[0, ] [0, ], [0, ],n nA t T G C T R C T R   →  is a 

linear operator with respect to ( )x t . 

Statement 2.1.2. Suppose that the conditions of Statement 2.1.1 are met 

with respect to the functional and a priori set and ( ),x t   are the solution of the 

system (2.1.10), where the operator ( ),A • •  is linear with respect to ( )x t  and is 

such that  

(i) ( ) ( ),A s k s   at 
0, [ , ]G s t T  ; 

(ii)   for arbitrary ( ) ( )1 [0, ], nx s C T R , arbitrary 
0 G   and  

0n n
 

→
⎯⎯⎯→  takes 

place 

 

( ) ( ) ( ) ( )
0

''

0
'

lim , , 0
n

t

n
t

A s x s A s x s ds
 

 
→

 − =     (2.1.11) 
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Then on the set G  there is an optimal a posteriori estimate ̂ .  

The proof is given in Appendix A.2.  

 

Consequence 1.  If the operator ( ),A s   is linear with respect to   then the 

condition (2.1.11) can be rewritten as  

 

( ) ( )
0

''

0
'

lim , , 0
n

t

n
t

A s A s ds
 

 
→

− =      (2.1.12) 

 

Consequence 2. If the operator ( ),A s   is linear relative   to and 

independent of  t , i.e. then  ( ) ( ),A s A =  the condition (2.1.11) can be rewritten 

as  

 

( ) ( )
0

0lim 0
n

nA A
 

 
→

− =      (2.1.13) 

 

Linear system with an integral nucleus. Consider the system 

 

( )
( ) ( ) ( )

( )
0

00

tdx t
Ax t K t s x s ds

dt

x x


= + −


 =


   (2.1.14) 

where the evaluated parameter   is an unknown integral nucleus ( )K G•  . 

Statement 2.1.3. Suppose that the conditions of Statement 2.1.1 regarding 

the functional and the a priori set are fulfilled and at the same time ( ),x t K  is the 

solution of the system (2.1.14), where the matrix-valued function ( )K s  belongs to 

the set G satisfying  

 (i)   for arbitrary ( )0K s G  and  
0n n

K K
→

⎯⎯⎯→  takes place 
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( ) ( )
2

0
0

lim 0
T

n
n

K K d  
→

− =    (2.1.15) 

Then there is an optimal a posteriori evaluation K̂  on the set ( )K G•  .  

The proof is given in Appendix A.2.  

Evaluation problems in Hilbert space. On the solutions of the system 

(2.1.8), (2.1.9), we will consider the following problems. 

 

Problem 2.1.1. With known values of the function ( )x s  and  
( )dx s

ds
, s T  find 

the estimates of the parameters   and  . 

 

Problem 2.1.2. With a given function ( )y t such that: 

 

( ) ( )( ) ( ),y t h t x t t= + , , 
0t t T  where my R , 

 

h  - known vector function, ( )t  - some unknown function belonging to the set G  

from the space ( )2 0 ,L t T  find the estimates of the parameters   and  , and the 

evaluation of the function ( )x s , s T . 

 

Let us first note that these problems fit into the problems of estimating 

solutions of differential equations in Hilbert spaces. 

Indeed, if you introduce a function ( )t  with values in 
1 2H H H=   as a 

solution to the equation 

 

( )00,
d

t
dt


 = = ,  
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where the derivative is understood in a strong sense, then we get a system of 

equations 

 

( )
( ) ( )( )

( )

1

0 0

, ,
dx t

f s x s s
dt

x t x




=

 =

, 

0
d

dt


= ,  ( )0 0t = .     (2.1.16) 

 

Thus, in the case of problem 1, we must find the estimate ( )t  as the 

solution of the differential equation by observing ( ) 0,x t t t T  what satisfies the 

equation (2.1.8). 

In the case of the second problem, the problem of estimation   is ( )x s  

reduced to estimating the solutions of the differential equation in the Hilbert space 

nR H .  

Therefore, it is advisable to first investigate the problems of estimating the 

parameters of the solution of the differential equation in Hilbert space. 

Let us first consider the case of a linear differential equation in H : 

( ) ( ) ( ) ( )1

dx
A t x t B t f t

dt
= +     (2.1.17) 

( )0 0x t x= , 

 

where ( ) ( ),A t H HL , ( )1f t  is an unknown function with ( )( )2 0 1, ,L t T F , where 

1F  is some Hilbert space, ( ) ( )1,B t F HL , norms ( )A t  and ( )B t  are -

continuous functions, 
0x  is an unknown vector with H . 

Note that the generalized solution of equation (2.1.17) will be understood as 

the solution of the integral equation: 
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( ) ( ) ( ) ( ) ( )
0 0

1

t t

t t

x t A s x s ds B s f s ds= +  . 

 

It is possible to show that such a solution exists and is a single one and is a 

continuous function. 

Let the following observations be given: 

 

( ) ( ) ( )( ) ( )2, , ( )y t t y x t f t= • • +H D , 

 

where  
2F , Y  are some Hilbert spaces, ( )tD  -- continuous by t , 

2f  -- unknown 

function from space 
2F , ( ) ( )( ), ,t y x• •H  depends on observations ( ),y s s t  and 

at fixed t  and y  is a reflection of space H  in Y . 

Let also the triple  ( ) ( )( )0 1 2, ,x f f• •  belong to some set G  of the Hilbert 

space ( )( ) ( )( )2 0 1 2 0 2, , , ,H L t T F L t T F  . 

Definition. A posteriori estimation of the vector ( )Sx T , where 

( )3,S H FL , 
3F  is the Hilbert space, we call the vector ( )ˆSx T , where ( )x̂ T  is the 

solution of the equation 

 

( ) ( ) ( ) ( )1

ˆ ˆˆ
dx

A t x t B t f t
dt

= + , 

( )0 0
ˆ ˆx t x= , 

 

and the pair ( )0 1
ˆˆ ,x f  belongs to a posteriori set yG , defined as follows: 

 

( ) ( ) ( ) 1

0 1 0 1 2, : , ,y yG x f x f f G=  , 

where 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 1

0 1 2 0 1 2 2 0, , : , , , H , , D ,yG x f f x f f G y t t y x t f t t t T=  = • • +    

 

Obviously, if  ( ) ( )( ), ,t y x• •H   is a continuous mapping and the set G  

is bounded, then the posteriori set is also bounded. 

 

Note 2.1.1. If 
0x̂ , 1f̂  are a posteriori estimates of vectors 

0x  and 
1f  , 

accordingly, then there is an inequality 

 

 
( )

( )

0 1

1 21 2
2 22 2 1

0 0 1 1 0 0 1 1
,

ˆ ˆˆ ˆsup
y

a
x f G

x x f f x x f f 


 − + −  − + − =
  

 

 

On the other hand, for minimax posteriori estimates 0
ˆ̂x , 1

ˆ̂
f defining from equality 

 

( ) ( )
 

( )0 1 0 1 0 1

1 2
21 2 222

0 0 1 1 0 0 1 1ˆˆ , , ,

ˆˆˆ ˆˆ ˆinf sup sup
y y y

a
x f G x f G x f G

x x f f x x f f 
  

 
− + − = − + − = 

 
 

 

The following inequality takes place 

 

( )1

a a  . 

 

Remark 2.1.2. Let G  be a bounded closed set.  Then 

 

( ) ( ) ( )
( ) ( )

0 1 1 1 2 2

1 2 1 222

0 0 1 1
, , , 1

ˆ ˆ ˆˆsup sup
y

l
x f G l l l l

x x f f L f L f
 + 

   − + − = + −
     

 

 

where 
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( ) ( )
1

sup inf
2 y

y

l
GG

L f L f
 

= − 
 

  ( ) ( ) ( )
1ˆ sup inf
2 y

y
GG

L f L f L f
 

= + 
 

 

( ) ( ) ( )1 0 2 1, ,L f l x l f= +    ( ) ( ) ( )1 0 2 1
ˆ ˆˆ, ,L f l x l f= +  

 

The proof is given in Appendix A.2.  

Note 2.1.3. Let the set yG  be bounded and closed, and centrally symmetric 

with respect to the vector 0 1,x f  (i.e., if  ( )0 0 1 1, yx x f f G− −   then and 

( )0 0 1 1, yx x f f G− − −  ). Then it is easy to see that 

 

( ) ( ) ( )sup sup
y yG G

L f L f L f= +  

( ) ( ) ( )inf sup
y

y
G G

L f L f L f= − +  

where ( )0 0,y yG G x f= −  and is centrally symmetric with respect to zero and means 

 

( )

( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 2 2

1 21

0 0 1 1
, , 1

ˆsup sup sup , ,
y y

a
l l l l G G

L f L f L f x x f f
+ 

 
 = + −  +   

 
 

 

The equal sign is achieved at f̂ f= . That is, f  it is a minimax a posteriori 

estimate with an estimation error 

 

( ) ( )
1 2

0 0 1 1sup , ,
y

a
G

x x f f  = +  . 

 

Next, consider the case when  ( ) ( )( ), ,t y x• •H  it depends on  ( )x •   

linearly, moreover  

 



 79 

( ) ( )( ) ( )( ) ( ), , ,t y x t y x t• • = •H H     (2.1.18) 

 

where ( )( ) ( ), ,t y H Y• H L . 

 Let's enter the functionality: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

0 0

0

0 1 2 0 0 0 1 1 1 2 2 2

2

, , , , ,

, ,

T T

t t

T

t

x f f Q x x Q f f dt Q f f dt

t y t t y x t f t dt

= + + +

+ − • −

 



J

H D t

 

and consider the following a posteriori set: 

 

( ) ( ) 0 1 0 1 2, : , , 1yG x f x f f= J     (2.1.19) 

 

Theorem 2.1.1.  A posteriori estimates of the problem (2.1.17)-(2.1.19) can 

be found as a result of solving the following system of equations with respect to 

( ) ( ) ( )ˆˆ, ,p t x t t  

 

( ) ( ) ( ) ( )( ) ( )

( )

* * ˆ' , ,

0,

p t A t p t t y t

p T

− − = •


=

H
    (2.1.20) 

 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 *

1

1

0 0 0

ˆ
ˆ ,

ˆ ,

dx t
A t x t B t Q B t p t

dt

x t Q p t

−

−


= +


 =

    (2.1.21) 

 

( ) ( )( ) ( ) ( ) ( ) ( )* 1 *

2

1 ˆˆ,
2

y t t y x t t Q t t−= • +H D D ,   (2.1.22) 

and have the following form 
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( ) ( ) ( )1 *

1 1f̂ t Q B t p t−= ,  ( ) ( ) ( )1 *

2 2

1ˆ ˆ
2

f t Q t t−= D .  (2.1.23) 

The proof is given in Appendix A.2.  

Theorem 2.1.2.  Let there be ( ) ( )
1

1 *

2G t Q t
−

− =  D D . Then the solution of 

the system (2.1.20)-(2.1.22) can be found in the form 

 

( ) ( ) ( ) ( )x̂ t t p t q t= +P     (2.1.24) 

 

where ( ) nq t R  is the solution to the problem 

 

( )
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( )

*

0

2 , ,

0,

dq t
A t q t t t y G y t t y q t

dt

q t


 = + • − •  


 =

P H H
  

 (2.1.25) 

 

operator ( ) ( ), nt H RP L  is the solution of the following Rikkati equation 

 

( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )

( )

* * 1

1

1

0 0

2 , , *

.

d t
A t t t A t t t y G t y t B t Q B t

dt

t Q

−

−


= + − • • +


 =

P
P P P H H P

P

 

(2.1.26) 

 

The proof is given in Appendix A.2.  

 

Finally, consider the case of the differential equation (2.1.17) over the space 

nR H , where is H  the abstract Hilbert space, and the operator ( )( ),t y •H  has 

the form ( )( ) ( )( )1, ,t y H t• = H , where ( )1

m nH t R  ,   is the null operator. Let 
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the vector ( ) nx t R H   have a representation 
1

2

x
x

x

 
=  
 

of , where 1

nx R , 
2x H . 

Let  us Y  consider mR  and 2

m mQ R  . Then: 

 

( ) ( ) ( ) ( ) ( )1 1 2y t H t x t t f t= +D , 

where ( ) ( )2

mt f t RD . 

Further, using the result [50] on the representation of the linear operator 

( ),n nA R H R H  L , where H  is the abstract Hilbert space, in the form: 

 

11 12

21 22

A A
A

A A

 
=  
 

, where ( )11 ,n nA R RL , ( )12 , nA H RL  ( ) ( )ˆ ˆinf , ,
G G

J J
 

   


= , , , 

, ( )22 ,A H HL   

Let's come to the following cleavages of operators: 

 

( )
( ) ( )

( ) ( )
11 12

21 22

A t A t
A t

A t A t

 
=  
 

, ( )
( ) ( )

( ) ( )
11 21

21 22

P t P t
t

P t P t

 
=  
 

P , 

11 12

1 1 1

1 21 22

1 1

Q Q
Q

Q Q

−
 

=  
 

, ( )
( ) ( )

( ) ( )
11 12

21 22

B t B t
B t

B t B t

 
=  
 

, 

 

where the elements of the operators belong to the corresponding spaces.  

In this case, the problem (2.1.25) for ( )
( )

( )

1

2

q t
q t

q t

 
=  
 
 

 is reduced to the 

following problems: 

 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

*1

11 1 12 2 11 1 1 1

1 0

2

0,

dq t
A t q t A t q t P t H t G y t H t q t

dt

q t


= + + −   


 =
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( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

*2

21 1 22 2 21 1 1 1

2 0

2

,

dq t
A t q t A t q t P t H t G y t H t q t

dt

q t


= + + −   


 = 

 

and four problems for the component of the operator ( )tP . 

 

 

2.2. The problem of identifying the integral nucleus in observations at 

known states and derivatives of the system 

 

Introduction and problem statement. When building models of a number 

of processes in biology and medicine [99,106,185] they encounter systems that 

include a continuously distributed delay in observations. General methods for 

identifying systems of this kind were developed in the works [16,56]. Thus, in [56]  

methods of estimation in Hilbert spaces were proposed. In the works [99,106] The 

type of integral nucleus can be chosen based on biological considerations and 

experimental data. Thus, there is a need for some universal methods for 

constructing estimates of the integral nucleus, guaranteeing their optimality in a 

certain sense. In this study, the approach of evaluating the integral nucleus as the 

Chebyshev center, i.e. the center of symmetry of a posteriori set, is implemented.  

In this paper, we consider the case when we have some observations 

( ) my t R   0,t T  of the form: 

 

( ) ( ) ( ) ( )2

0

t

y t K t s x s ds f t= − +     (2.2.1) 

 

where ( )2 [0, ], mf t C T R      are unknown errors, ( ) m nK s R  , is  0,s T  an 

unknown matrix function consisting of continuously differentiable elements. The 

following results will be based on the assumption that 
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( )
( )

( )

1

0

,

0 .

dK s
F s

ds

K K


=


 =

      (2.2.2) 

 

where ( )1 2 [0, ], m nF s L T R      is the unknown matrix-valued function, 0

m nK R   

is the unknown constant matrix.  Next, we will use the notation ( )( )1 0,K F K s  for 

the solution (2.2.2).  

Values  
2 1 0, ,f F K  are limited by irregularities 

 

( ) ( ) ( )2 2

2 2 2 1 1 0 0
0 0

, 1
T T

Q f f dt sp F t F t dt spK K  + +     (2.2.3) 

 

that specify a priori set. Here 2 , ,m mQ R    are the known positively defined 

matrix and positive constants, respectively. 

The purpose of the work is to find a posteriori estimation of the integral 

nucleus ( )K s , a posteriori set yG  and a posteriori error  .  

 

Let's first find a posteriori estimates 
0K  and ( )1F s . 

Statement 2.2.1. A posteriori estimates 
0K  of observations ( ( )1F s  2.2.1) 

can be calculated as 

 

( )0 2

1ˆ 0K 


=      (2.2.4) 

( ) ( )1 2

1
F̂ s s



=      (2.2.5) 
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where 1 [0, ], m nC T R      is the matrix, which is the solution of the initial 

problem 

 

( )
( ) ( ) ( ) ( )

( )

1

2 0 1 3 3 1 1
0

ˆ ˆ ,
T t t s

s o

d s
Q y t K F s ds x s ds x t s dt

ds

T





−
   = − + −     

 = 

    (2.2.6) 

 

  - zero-matrix.  

The proof is given in [194, p.4-5].  

Theorem 2.2.1. The posteriori set for the problem (2.2.1) -(2.2.3) can be 

described as 

( ) ( ) 1 1 1 1

1 0 2

0 0 0 0

ˆ ˆ
, [0, ], : , 1

ˆ ˆ

m n m n

y

F F F F
G F K L T R R

K K K K
 

     − − 
 =    −        − −      

P , 

  (2.2.7) 

 

where ( ) ( )( )2 2[0, ], , [0, ],m n m n m n m nL T R R L T R R     P L  is some positively 

defined operator, 1 0
ˆ ˆ,F K  is given by (2.2.4), (2.2.5), :0 1    is a constant 

defined as 

 

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( )

1 0 2 1 1
0 0 0

2 2

1 1 0 0
0

ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ

T t t

T

J F K Q y t K F t s x s ds y t K F t s x s ds dt

sp F t F t dt spK K



  

= = − − − − +

+ +

  


 

(2.2.8) 

The proof is given in [194, p.6-7].   
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Note 2.2.1. The posteriori set 
yG  (2.2.11) is symmetric with respect to 

( )1 0
ˆ ˆ,F K . Thus, together with , 

yG  we will use a set 
yG symmetric with respect 

to( ),   where  is the zero-matrix, i.e. 

( ) ( ) 1 1

1 0 2

0 0

, [0, ], : P , 1m n m n

y

F F
G F K L T R R

K K
 

      
=    −         
      

.  

 (2.2.9) 

Our next goal is to find the a posteriori set of the problem (2.2.1) -(2.2.3) for 

the integral nucleus ( )K s .  

Definition. The posteriori set of the problem (2.2.1) -(2.2.3) for the integral 

nucleus  ( )K s  is called  

( ) ( ) ( ) 2 1 0[0, ], : , 1m n

KG K L T R J F K= •    

 

Theorem 2.2.2. The posteriori set of the problem (2.2.1) -(2.2.3) can be 

described as 

( ) ( ) ( ) ( )( ) ( ) 
1 2

1 21

2
ˆ ˆ[0, ], : , 1m n

KG K L T R K K K K  −= •  − −  −S  (2.2.10) 

 

where ( ) ( )( )2 2[0, ], , [0, ],m n m nL T R L T R S L  is some positively defined linear 

operator,  ( )K̂ s - is given by (2.2.4),  :0 1   is the constant defined in (2.2.8). 

The proof is given in [194, p.8-10].  

Theorem 2.2.3.  The posteriori error 
( )1

a   for the problem (2.2.1) -(2.2.3) 

based on the posteriori set yG given by the expression (2.2.7) is 

( ) ( )1 1

1
a 


=

−
max P      (2.2.11) 

The proof is given in [194, pp. 10-11].   

A case of unknown constraints on the initial value of an integral 

nucleus. Next, consider the case of  model (2.2.1), (2.2.2), where we do not have 
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any information about the unknown value 
0K . That is, we consider the following 

constraints 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

1 0 2
0 0 0

2

1 1
0

, ,

1

T t t

T

J F K Q y t K t s x s ds y t K t s x s ds dt

sp F t F t dt 

= − − − − +

+ 

  


 (2.2.12) 

 

Statement 2.2.2. A posteriori estimates for 
0K  and ( )1F s  from the problem 

(2.2.1), (2.2.2), (2.2.12) can be calculated as 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )1
1

0 1 2 2 1 1 1 1
0 0 0 0 0

ˆ ˆ
T T t t s T T t

s s
K y t F s ds x s ds x t s dtds x s ds x t s dtds

−
−

 = − − −      
 

(2.2.13) 

  ( ) ( )1 2

1
F̂ s s


= −       (2.2.14) 

 

where 1 [0, ], m nC T R      is the matrix function, which is the solution to the 

initial problem 

 

( )
( ) ( )( ) ( )( ) ( )

( )

1

2 0 1 2 2 1 1
0 0

ˆ ˆ ,
T t t s

s

d s
Q y t K F s ds x s ds x t s dt

ds

T





−


− = − + −

 = 

  

 (2.2.15)  

 

  - zero-matrix.  

The proof is given in [194, pp. 12-13].  
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A posteriori sets yG , 
KG  and a posteriori error 

( )1

a  for problems (2.2.1), 

(2.2.2), (2.2.12) has  a form similar to that presented in theorems 2.2.1, 2.2.2, 2.2.3.  

 

2.3. Approximate a posteriori estimates of the parameters of differential 

equations with Voltaire operators 

 

In this subsection, algorithms for solving problem 2, posed in subsection 2.1 

in the class of integro-differential equations, will be proposed. 

Problem statement. Consider the case where we have some observations 

( ) my t R ,  0,t T  

 

( ) ( ) ( ) ( )2 ,y t H t x t f t= +     (2.3.1) 

 

( ( ) nx t R , ( ) m nH t R   is a known matrix, the elements of which are continuous 

on [0, ]T  functions, ( )2 2 [0, ], mf t L T R     - unknown functions) and ( )x t  is the 

solution of the differential equation 

 

( )
( ) ( ) ( )

( )
0

00

tdx t
Ax t K t s x s ds

dt

x x


= + −


 =

 ,    (2.3.2) 

 

where ( ) n nK s R  ,  0,s T   is an unknown matrix function with continuous 

elements, 
0

nx R  is a known initial state, 
n nA R   is a known matrix.  

Suppose the values  
2 ,f K  are bounded by inequality 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )2

2 2 2 2
0 0

, , 1
T T T

J f K Q f f dt sp K t K t K t K t dt= + − −    (2.3.3) 
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Here 
2 ,m mQ R   - the positively defined matrix and the positive constant are 

known, respectively, ( ) n nK s R   - the matrix function with  0,C T . 

Further, without limiting generality, we will assume that K =  , i.e.: 

 

( ) ( ) ( ) ( )2

2 2 2 2
0 0

, , 1
T T

TJ f K Q f f dt sp K t K t dt= +      (2.3.4) 

Definition 2.3.1. A posteriori set for an integral nucleus K  based on 

observations (2.3.1), system (2.3.2) and constraints (2.3.4) is called 

( ) ( ) ( ) *

2 [0, ], : 1n n

KG K L T R J K= •    

Definition 2.3.2. For a posteriori estimate of the integral nucleus K  based 

on observations (2.3.1), system (2.3.2) and constraints (2.3.4), we take the value 

( ) ( )*ˆ arginf
K

K s J K= , 

where ( ) ( )* ,J K J y Hx K= − . 

Algorithm for finding the initial approximation of the kernel. Let's give 

some iterative algorithm to find kernel estimates. Suppose we have some estimate 

( )nK s . Let ( )nx t  be the solution of the problem (2.3.2), corresponding ( )nK s to , 

and ( ) ( )1

1 [0, ], n

nx t C T R+   be the  solution of the following equation 

 

( )
( ) ( ) ( )

( )

1

1

0

1 00

t

n

n n

n

dx t
Ax t K t s x s ds

dt

x x

+

+

+


= + −


 =

 , 0,1,...n =    (2.3.5) 

with some ( ) ( )2 [0, ], n nK L T R •  .  

Let us denote the solution (2.3.5) corresponding to a specific kernel ( )K •  

through ( )( )1nx K t+ . Consider an approximate posteriori set: 
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( ) ( ) : 1K nG n K J K=       (2.3.6) 

 

where  

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )

2 1 1
0

2

0

,
T

n n n

T

J K Q y t H t x t y t H t x t dt

sp K t K t dt

+ +



= − − +

+




  (2.3.7) 

 

We will find an approximate a posteriori assessment from the condition: 

 

( )
( )1ˆ arg inf

K

n

n
K G n

K J K+


=  

 

Lemma 2.3.1. The approximate a posteriori estimate of the integral nucleus 

( ), [0, ]K s s T  for the problem (2.3.5)-(2.3.7) has the form  

 

( ) ( ) ( )1

1 12

1ˆ
T

n

n n
s

K s t x t s dt


+ 

+ += − , (0, ]s T    (2.3.8) 

 

where 1

n

n R +   is the solution of the boundary value problem 

 

( )
( ) ( ) ( )

( )

11

1

0

1 0

ˆ

0

t

nn

n n

n

dx t
Ax t K t s x s ds

dt

x x

++

+

+


= + −


 =

     (2.3.9) 

( )
( ) ( ) ( ) ( ) ( )( )

( )

1

1 2 1

1

,n

n n

n

d t
A t H t Q y t H t x t

dt

T






 +

+ +

+


− − = −

 = 

 (2.3.10)  

 

  - zero vector.  
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The proof is given in [213, p. 48].  

Search for an integral nucleus using a small parameter decomposition. 

Suppose further that the unknown nucleus ( )K •  can be given as  

 

( ) ( ) ( )0 1K s K s K s= +     (2.3.11) 

 

where ( )0K s is the known function and is ( )1 n nK s R   the  unknown matrix 

function.  

Let us denote the solution (2.3.2), which corresponds to (2.3.11) as ( )x  .  

Let's put the following system of equations in accordance with the system 

(2.3.2) with the kernel ( )K s  of the form (2.3.11) 

 

( )
( ) ( ) ( ) ( ) ( )

( )

1

1 0 1 1
0 0

1 0 0

t tdx t
Ax t K t s x s ds K t s x s ds

dt

x


= + − + −


 =

   

 (2.3.12) 

 

where ( ) ( )1 [0, ], nx C T R•   is the known solution of the main initial problem 

 

( )
( ) ( ) ( )

( )

0
0

00

tdx t
Ax t K t s x s ds

dt

x x


= + −


 =

    (2.3.13) 

and  

( )
( )

1

0

x
x t






=


=


.      (2.3.14) 

  

The approximate posteriori set is written in the form 
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( ) ( ) 1

1 1: 1
K

G K J K =  , 

 

where 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1

1 1
0

2 1 1

0

,
T

T

J K Q y t H t x t H t x t y t H t x t H t x t dt

sp K s K s ds

  

 

= − − − − +      

+




 

where ( )x t  is the solution of the problem (2.3.13), ( )1x t  is the solution of the 

problem (2.3.12). We will look for an approximate a posteriori estimate from the 

condition: 

 

( )
( )

1
1

1 1arg inf
K

K G
K J K


=     (2.3.15) 

 

Statement 2.3.1. An approximate posteriori estimate of the integral nucleus 

( )1 , [0, ]K s s T   is  

 

( ) ( ) ( )1

2

1ˆ
T

s
K s t x t s dt



= − , [0, ]s T    (2.3.16) 

where 1 [0, ], nC T R    
 is the solution of the main initial problem 

 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( )

0

1

2 0 1
ˆ

T

t

d t
A t K s t s ds

dt

H t Q y t H t x H t x K t

T


 

 



 




− − − − =

  = − − −  


= 




 (2.3.17)  
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  - zero vector.  

The proof is given in [213, p. 50].  

Next, we consider the case when the nucleus ( )1K s  is differentiable, that is, 

there is a relationship 

 

( )
( )

( )

1

1

1 1

0

,

0 .

dK s
F s

ds

K K


=


 =

      (2.3.18) 

 

where ( )1 2 [0, ], n nF s L T R    
 is the unknown matrix value function, 1

0

n nK R   is 

the unknown constant matrix. The approximate a posteriori set is given as: 

 

( )
( )( ) ( )( ) 1

1 0

1 1

1 0 1 0,
, : , 1

F s K
G F s K J F s K=   

 

where  

 

( )( ) ( ) ( )( ) ( ) ( )1 2 2 1 1

1 0 2 2 2 1 1 0 0
0 0

, ,
T T

J F s K Q f t f t dt sp F s F s ds spK K  = + +    

 

We will look for an approximate a posteriori estimate under the condition: 

 

( )( )
( )( )

( )

( )( )
1

1 0 1,1 0

1 1

1 0 1 0
,

ˆ ˆ, arg inf ,
F s K

F s K G

F s K J F s K


=    (2.3.19) 

 

Statement 2.3.2. An approximate a posteriori estimation of the integral 

nucleus ( )1 , [0, ]K s s T  for the problem (2.3.18), (2.3.19) has the form  

 

( ) ( )1 1

0 1
0

ˆ ˆ ˆ
s

K s K F s ds= +       (2.3.20) 
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where 1

0K̂  and ( )1F̂ s  are approximate a posteriori estimates for 1

0K  and ( )1F s  

respectively. 1

0K̂  and ( )1F̂ s  can be calculated as 

 

( )1

0 2

1ˆ 0K 


= ,  ( ) ( )1 2

1
F̂ s s


= ,   (2.3.21) 

 

where 1 [0, ], n nC T R    
 is the matrix, which is the solution of the boundary 

value problem 

 

( )
( ) ( )

( )

,
T

s

d s
p t x t s dt

ds

T






− = −

 = 

     (2.3.22)  

 

  - zero-matrix, where ( ) ( )1 [0, ], np t C T R  is the solution of the boundary value 

problem 

 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( )

0

2 0 1 1
ˆ ,

0

T

t

dp t
A p t K s t p s ds

dt

H t Q y t H t x H t x F t

p T

 

 




− − − − =

  = − − −  


=




 (2.3.23) 

The proof is given in [213, p. 51-52]. 

Combining statements 2.3.1 and 2.3.2, we get the following result. 

Comments. An approximate a posteriori estimate of the integral nucleus 

( ), [0, ]K s s T  for the problem (2.3.1), (2.3.2) with a small parameter   can be 

found as  
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( ) ( ) ( )0 1
ˆ ˆ ˆK s K s K s= +      (2.3.24) 

 

where ( )0K̂ s  is some initial approximation. ( )1K̂ s  is calculated according to 

(2.3.16) in the case of constraints (2.3.15). If the integral kernel is differentiable 

and we have constraints (2.3.18), (2.3.1923), then ( )1K̂ s  we use (2.3.20), (2.3.21) 

for the calculation. 

 

 

2.4. Identification of parameters of systems with a delay  

 

A system of nonlinear differential equations with a delay in the argument is 

considered: 

 

0,

0 0

( )
( , ( ), ( ), ),

( ) ( ), ( , ).

dx t
f t x t x t t t

dt

x t t t t t

 

 


= − 


 =  −

   (2.4.1) 

 

At ( ) , 0mx t R    is a constant delay, mR are the parameters of the 

system. We assume that there is a single solution (2.4.1) in the class of 

continuously-differentiable functions on the interval  0 0, ,t t T T t  . 

The identification task for the system (2.4.1) is to find the parameters 

G  and the magnitude of the delay G   if the  function of the form is 

observed  0 ,t t T  on the interval: 

 

( ) ( ) ( ) ( )y t H t x t v t= + , 
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where ( )H t  is the matrix function, ( )v t  is an unknown vector function, such that 

the condition is met: 

 

( )( )
0

, 1

T

t

t v t dt  , 

where  ( ), 0t v   is a continuous function by variables. 

The posteriori set to which the parameters   and  , belong, will be of the 

form 

( ) ( ) ( ) ( )( )
0

, : , , , 1

T

y

t

G t y t H t x t dt   
  

=  −  
  

 . 

 

For a posteriori assessment of parameters, we take the values ̂  and ̂  such 

that: 

( ) ( )ˆ ˆinf , ,
G G

J J
 

   


=  

where 

 ( ) ( ) ( ) ( )( )
0

, , , ,

T

t

J t y t H t x t dt   =  − .   (2.4.2) 

 

Here ( , , )x t   is the solution of the system (2.4.1) at the given values and   

 . Note that such ̂  and ̂  exist when G  and G  are compact sets, and the 

solution of the system (2.4.1) ( ), ,x t    continuously  depends on the parameters   

and  .  

Next, we assume that for the system (2.4.1) the conditions of differentiation 

by parameters   and   [50]  are met. 

Definition 2.4.1. The system sensitivity function (2.4.1) with respect to 

parameters mR  is called the matrix function 
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( , , )
( , , ) , 1, , 1,i

j

x t
U t i n j m

 
 




= = = 

 
 

 

Definition 2.4.2. The sensitivity function of the system (2.4.1) relative to the 

value of the delay   is called the vector function  

 

1,

( , , )
( , , ) i

i n

x t
U t

 
 

 =

 
=  

 
 

 

Lemma 2.4.1. Sensitivity functions ( , , )U t    and ( , , )U t    can be found 

from the following initial problems: 

 

( ) ( )

 

0

0 0

( , , ) ( , , ( ), ) ( , ( ), , )
( , , ) ( , , )

( , ( ), ( ), )
,

( ) 0, ,

x x t y x t

dU t f t x x t f t x t y
U t U t

dt x y

f t x t x t
t t

U t t t t



 





    
    

 





= = −

  − 
= + − +

 
  −
+ 


   −



 

(2.4.3) 

 

( )

( )

 

0

0 0

( , , ) ( , , ( ), )
( , , )

( , ( ), , )
( , , ),

( ) 0, ,

x x t

y x t

dU t f t x x t
U t

dt x

f t x t y
U t t t

y

U t t t t










   
 


  



=

= −

  −
= + 


 
+ − 




  −


 

(2.4.4) 
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The proof follows by differentiating the system (2.4.1) for   and   

respectively and using the definitions 2.4.1 and 2.4.2.  

When solving the problem of identifying system parameters ( , )   (2.4.1), 

we assume that some initial approximations are given 
0 0( , )  . 

We will use the following iterative procedure: 

 

1

1

ˆ ˆ ;

ˆ ˆ , 0,1,2 ...

i i i

i i i i

  

  

+

+

= + 

= +  =
    (2.4.5) 

 

Here ˆ ˆ( , ), 1,2,...i i i  = are the estimates of the parameters and the magnitude of the 

delay, ( , ), 1,2,...i i i   = the increments that will be determined at each step. In 

this case, it is necessary to check the fulfillment ˆ 0i    of the condition or use the 

method of conditional optimization (for example, penalty functions).  

To determine the magnitude of the increases ( , )i i    , we will use the first 

approximation: 

 

ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ;

ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ;

i i i i i i i i

i i i i i i i i

x t x t U t

x t x t U t





       

       

+   + 

+   + 
  (2.4.6) 

 

Theorem 2.4.1. Suppose  that the function ( ),t v  is differentiable by the 

second variable  

Then the magnitudes of the increments ( , )i i    can be found from the 

equations 
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( )

( ) ( )( )

( )

( )

( ) ( )( )

( )

0

0

ˆ ˆ ˆ ˆ( , , ) ( , , )

ˆ ˆ ˆ ˆ( , , ) ( , , )

,
ˆ ˆ( , , ) 0

,
ˆ ˆ( , , ) 0

i i i i i

i i i i i

T

i i

t v y t H t x t U t

T

i i

t v y t H t x t U t

t v
H t U t dt

v

t v
H t U t dt

v







    



    

 

 

= − + 

= − + 


=




=







  (2.4.7) 

relative to 
i  and 

i , provided that such solutions exist. 

The proof is given in Appendix A.2.   

Consequence 2.4.1. Let the function ( ), Tt v v v =   and at the same time be 

given observations ( )H t H . Suppose that with given parameter estimates, the 

ˆ ˆ( , )i i   system (2.4.1) is such that : 

 

0

0

ˆ ˆ ˆ ˆ1)det ( , , ) ( , , ) 0,

ˆ ˆ ˆ ˆ2)det ( , , ) ( , , ) 0

T

T

i i i i

t

T

T

i i i i

t

U t U t dt

U t U t dt

 

 

   

   









    (2.4.8) 

 

Then the magnitudes of the gains ( , )i i    can be found from the 

formulas: 

 

0 0

0 0

1

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , )( ( ) ( , , ))

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , )( ( ) ( , , ))

T T

T T

i i i i i i i з i i

t t

T T

T T

i i i i i i i з i i

t t

U t U t dt U t x t x t dt

U t U t dt U t x t x t dt

  

  

        

        

−

−

 
 =  − 

 
 

 
 =  − 

 
 

 

 

 

(2.4.9) 

The proof follows directly from theorem 2.4.1. We only note that the 

conditions (2.4.8) are the conditions for the existence of solutions to equations 

(2.4.7). 
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Lemma 2.4.2.   Suppose that the system (2.4.1) satisfies the following 

inequalities at  0 ,t t T : 

( )( )

( )

( )( )

( )

, , , , , ,
,

, , ,

x x t y x t

f t x x t f t x t y
a b

x y

f f
c d R h R h



   

  

 

= = −

 − 
 

 

 
   

 

 

where , , , , ,a b c d h h  are some steels. 

Here R and R   are --nonlinear expressions with respect to second-order 

sensitivity functions that arise in computation 
( ) ( )2

U t  and 
( ) ( )2

U t : 

 

(2)

(2)

(2)

0

(2)

0

( )
( )

( )

( ) ( , ( ), ( ), ( ), ( ), , ),
( )

( ) 0,

dU t f
U t

dt x t

f
U t R t x t x t U t U t t t

x t

U t t t





   



    



 = +

 



+ − + − − 
 −

 = 




 (2.4.10) 

(2)

(2) (2)

0

(2)

0

( )
( ) ( )

( ) ( )

( , ( ), ( ), ( ), ( ), , ),

( ) 0,

dU t f f
U t U t

dt x t x t

R t x t x t U t U t t t

U t t t




 

 






   


  = + − +

   −

+ − − 


= 



    (2.4.11) 

Then the following assessments take place 

 

0( )( )

1
ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , )

2

T
a b t ti i

i i i i i i i

h h
x t x t U t e

a b a b

 



 
       + −

+

  
− −    − 

+ + 
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(2.4.12) 

 

0)

2
( )(

1
ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , )

2

a b t ti
i i i i i i i

h h
x t x t U t e

a b a b

 



      

+ −

+

  
− −    − + + 

 

(2.4.13) 

The proof is given in [176, pp. 259-260]. 

Theorem 2.4.2. Let the conditions of the lemma 2.4.2 be fulfilled for the 

system (2.4.1). In addition, let there be a positive constant H , such that 

( )
M

H t H ,  
0[ , ]t t T , is 

M
• any matrix norm, and the function ( )( ),t v t  

satisfies the 
0[ , ]t t T  Lipschitz condition for the second variable in between, i.e. 

there is a constant 0L   such that ( )( ) ( )( ) ( ) ( )1 2 1 2, ,t v t t v t L v t v t −  − , 

0[ , ]t t T . Then the following estimates take place: 

( ) ( )
( )

( )( )0

2

1 0

1
, ,

2

a b T t

i i i i i

LHh e
J J T t

a b a b

    
+ −

+

 − 
−  − +  

+ +  
 

(2.4.15) 

( ) ( )
( )

( )( )0

1 0

1
, ,

2

a b T t

T

i i i i i i

LHh e
J J T t

a b a b

     
+ −

+

 − 
−  − +   

+ +  
 

The proof follows using inequality for the functionality ( ),J    (2.4.12). 

 

 

2.5. Overview of algorithms used to model changes in bone tissue  

 

Cells of biological tissues have the unique property of changing the tissue 

matrix in response to environmental influences. This ability to adapt is not only 

impressive from a scientific point of view, but also has important clinical 

implications. If the adaptive capacity becomes unbalanced, for example, in the case 

of osteoporosis, this leads to the formation of tissues that are not able to withstand 
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functional loads and fractures. Interest in both identifying mechanisms and 

predicting tissue adaptation in clinical applications has led to the development of 

numerical models to predict bone adaptation. 

Bone morphology. Bone tissue consists of cellular elements interconnected 

by a special substance called matrix [65]. Bone cells include: 

◼ Osteoclasts are primary cells that resorb (destroy) bone. They can be in 

active and inactive states.  

◼ osteoblasts are cells responsible for the production of bone matrix and its 

mineralization, as well as for structural ordering. In addition, they can act 

as intermediaries in the transmission of signals to osteoclasts. 

◼ monocytes and macrophages - can be considered as non-bone cells, but 

they play a role in bone resorption, in particular, they destroy tissue 

residues that have not destroyed osteoclasts. 

The matrix is an extracellular tissue, which is a biphasic material that 

consists of about 35% organic matrix and about 65% inorganic mineral.   

General adaptation mechanisms. It has been experimentally established 

that bone tissue responds to external influences either by growing in length and 

width (osteogenesis), or by shaping (modelling), or by internal restructuring 

(reconstruction, remodelling) [65].  

Osteogenesis occurs during embryonic development, in the early stages of 

growth, as well as during recovery during treatment. Bone is formed on soft tissue. 

In this case, osteoblasts originating from mesenchymal cells act independently of 

osteoclasts. There is the potential to create large areas of bone. 

Formation occurs during growth and during recovery. Bone is formed on 

existing bone tissue. Osteoclasts and osteoclasts act independently in different 

places. There is the potential to create or destroy large areas of bone. 

Internal restructuring occurs from bone growth throughout life. Bone is both 

formed and destroyed in the same place. This is the only normal physiological 
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mechanism for bone changes in adults. Under favorable circumstances, it leads to 

bone preservation. However, with aging, bone is somewhat lost.  

Factors affecting the adaptation of bone tissue. Increased resorption is 

caused by the presence of parathyroid hormone, prostaglandins, glucocorticoids, 

thyroid hormones, etc. 

Activation of bone tissue formation can be caused by calcitonin, vitamin D3, 

sex hormones (estrogens, androgens, progestins), bisphosphonates, sodium 

fluoride. 

The effect of exposure to cytokines and growth factors depends on the cell-

cell, cell-matrix interaction, the degree of differentiation of target cells, and can be 

both resorbing and forming. 

The main hormones traditionally considered regulators of calcium 

metabolism and bone condition are calcitonin and parathyroid hormone. 

Calcitonin is secreted by thyroid C-cells in response to an increase in Ca in 

the blood. It is a powerful direct inhibitor of osteoclastic activity and the formation 

of osteoclasts. 

Parathyroid hormone is a potential bone resorption hormone that increases 

the number and activity of osteoclasts, which leads to the release of Ca and P from 

the mineral matrix, enhances the reabsorption of Ca in the kidneys, enhances the 

absorption of Ca in the small intestine (in the presence of vitamin D3), and 

regulates the excretion of P through the kidneys. The amount of parathyroid 

hormone in the blood is regulated directly by the level of Ca in the blood.  
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Mathematical theories of adaptation mechanisms. The first successful 

mathematical theories regarding the relationship between bone adaptation and 

mechanical stimuli appeared in the 1970s. The basic concepts of all mathematical 

and numerical theories of adaptation are based on an equation describing the 

evolution of bone structure, using the current bone structure and the existing 

mechanical state [93,94]: 

 

( ) ( ( ), ( ), ( ))t t f t t t   +  = . 

 

Here ( )t t +   are the parameters of the bone structure (most often bone density is 

taken) at the current moment of time t t+ , ( )t  - the previous bone density at the 

time t , ( )t  - the amount of bone compression at the time t , ( )t  - the amount of 

bone stretch at the time t . When the bone structure changes, the mechanical 

properties of the bone also change, characterized by the following structural and 

functional dependence: 

 

( , ( ( ))eff eff microc c c M t t= +  . 

 

Here 
effc  is the effective strength, which depends on the microstructural 

strength and on the degree of orderliness of materials of different strengths, which 

is given by the matrix M , which is a function of the structure at the moment t t+ . 

Since the properties of the material change, the compressive and tensile fields of 

the bone will change even when the load is constant. In this case, the compression 

and tensile fields are built in the form of 

 

( ), ( ) ( , , )efft t f c t b  = .    (2.5.1) 

 

They can be found from equations 
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( ( )) 0eff

ijkl kl

i

c t t b
x




+  + =


.    (2.5.2) 

 

Equations (2.5.1) and (2.5.2) simulate the physiological process of bone 

adaptation. Here bare mechanical signals filtered through tissues up to the level of 

bone cells. Bone cells sense mechanical signals and determine through special 

mechanisms whether these signals belong to the range of homeostatic perception.  

For numerical simulation of bone adaptation, most of the numerical methods 

for calculating the compression-tensile medium are based on the finite element 

method. The most important thing that differs in numerical modeling of bone 

adaptation is the assumption of how the structure of the bone changes in the 

current mechanical environment. 

Next, various theories about the mechanical environment of bone structure 

that have been proposed to model bone adaptation will be presented. 

Algorithm of S. Kovin. The first prominent theory was developed by S. 

Kovin in 1976. The result of this theory was the following relationship between 

changes in the structure of bone tissue and mechanical stress [94]: 

 

1
( ) ( ) ( )

2
ij ij ijkl ij kl

de
e a e A e B e

dt
  

•

= = + + . 

 

Here e is a measure of bone structure (mainly bone density), , ,ij ijkla A B  - 

reconstruction tensors, which should be determined experimentally, ij  - tension. 

Note that reconstruction tensors depend on the current bone structure. It is also 

theoretically possible that reconstruction tensors take into account the state of the 

skeleton, i.e. whether modeling or reconstruction is possible.combine the equations 
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already discussed, namely structural-functional relationships, with the equations of 

elasticity. Next, it is necessary to iterate between: 

1)  reconstruction equations to obtain structures based on compression-tensile 

fields; 

2)  structural and functional relationships to obtain strength based on structure; 

3)  elasticity equations to obtain compression-tensile fields using strength. 

Using a program based on the finite element method and previous equations, it is 

found that it is very difficult to determine the reconstruction constants, although 

the qualitative results are good. 

 So, finally, Covin's algorithm for modeling bone adaptation looks like this: 

1. Change the structure of the bone 

 

1
( ) ( ) ( ( )) ( ) ( ) ( )

2
ij ij ijkl ij kle t t e t t a e t A t B t t  

 
+  = +  + + 

 
 

 

2.  Change the effective strength of the bone based on the altered bone structure: 

 

( ( ), )eff bc f e t t c E a= +   =  

 

3.  Solve the equation of equilibrium with new strength to determine the new 

compressive-tensile fields: 

 

( )( ) ( ) 0effc t t t t
x




+  +  =


 

 

4.  Go back to step 1 and change the bone structure. Repeat until convergence is 

achieved. 
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Figri's algorithm. The next approach to bone adaptation was proposed by 

Figree and Carter in 1984. According to this approach, the goal of bone adaptation 

is to optimize the bone structure so that the compression measure is limited at the 

top to some fixed number. 

 

max

min

( , , )Q Q



  

→


 

 

Here   is bone density, Q  is a measure of bone compression, such as Mises 

compression, 
maxQ  is the limit of acceptable compression in bone tissue. In Figri's 

approach to modeling bone adaptation, the numerical algorithm would look like 

this: 

 

1. Change the structure of the bone 

 

1

1

max

T B
p n p

n

F

Q

 
 +

 
=   
 

 

 

Here 

1 1
1

2 2

1 1
1

2 2

1 1
1

2 2

nF

 
− − 

 
 = − −
 
 
 − −
  

, 

p  - fundamental compression, B  - a coefficient of structural-functional 

relationship. 

 

2.  Change the effective strength of the bone based on the altered bone structure: 
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( ( ), )eff bc f t t c E a = +   =  

 

3.  Solve the equation of equilibrium with new strength to determine the new 

compressive-tensile fields: 

 

( )( ) ( ) 0effc t t t t
x




+  +  =


 

 

4.  Go back to step 1 and change the bone structure. Repeat until convergence is 

achieved. 

 

Using the algorithm proposed above for different matrices F , Figri was able 

to predict the distribution of bone density in the femoral head. 

A third approach to modeling bone adaptation was proposed by Huyskes in 

1987 [105]. This approach is again a continuation of Covin's approach, but it 

includes tensile energy density as a mechanical stimulus and a "zone of inactivity". 

The zone of inactivity is the interval of tensile energy densities for which no 

adaptation of the bone occurs. The concept of an inactivity zone can be graphically 

illustrated as follows: 

U
n

U

s2

Швидкість

реконструкції

 

Rice. 2.5.1. Zone of inactivity 
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Using the concept of the zone of inactivity, the equation of evolution of the 

structure of the tissue will take the form: 

 

( (1 ) )  if  (1 )

0    if  (1 ) (1 )

( (1 ) )    if   (1 )

n n

n n

n

d
K U s U U s U

dt

d
s U U s U

dt

d
K U s U U s U

dt







= − +  +

= −   +

= − −  −

 

 

Here    is the density of the bone, U  is the current tensile energy density, 
nU  is 

the target tensile energy density, s  is the width of the inactivity zone, K  is the 

constant of the reconstruction. So, Huyskes proposed the following algorithm for 

modeling bone adaptation: 

 

1. Change the structure of the bone, taking into account the ingress of tensile 

energy density into the zone of inactivity: 

 

( ) ( ) ( (1 ) )  if  (1 )

( ) ( )    if  (1 ) (1 )

( ) ( ) ( (1 ) )    if   (1 )

n n

n n
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 

 

 

+  = +  − +  +

+  = −   +

+  = +  − −  −

 

 

2.  Change the effective strength of the bone based on the altered bone structure: 

 

( ( ), )eff bc f t t c E a = +   =  

 

3.  Solve the equation of equilibrium with new strength to determine the new 

compressive-tensile fields: 
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( )( ) ( ) 0effc t t t t
x




+  +  =


 

 

4.  Go back to step 1 and change the bone structure. Repeat until convergence is 

achieved. 

Taking into account biological factors in modeling bone adaptation. The 

theories discussed above take into account the influence of mechanical factors on 

bone adaptation. Biological factors are no less significant.  

The following concept for modeling bone adaptation was developed by Figri 

and Schaffler in 1995. Figri and Schaffler noted that bone tissue will not be 

completely destroyed even in the absence of mechanical factors. Previous models 

predicted complete bone loss if there are no active mechanical forces: 

 

( )
( ( , ( )) )

d t
B t F

dt


  = − . 

 

Here B  is the reconstruction coefficient, F  the target state,   is a function 

of the target state, which depends on compression and pre-density. Figri and 

Schaffler proposed that instead of adaptation to mechanical stimuli, use the 

adaptation of the tissue matrix by bone cells to a certain level of density, which is a 

function of biological influences and mechanical stimulation. According to this 

assumption, the equation of evolution of tissue structure should look like this: 

 

( )
( ( ) ( ))

d t
B t M E

dt


= −  

 

Here B  is a constant reconstruction, M  a function that depends on the 

applied mechanical stimulus, but which is not necessarily zero in its absence.  
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Algorithms for modeling the adaptation of bone tissue at the cellular 

level.In  all the algorithms proposed above, the work of cells in the process of 

continuous bone reconstruction was considered a "black box". In 1998, Mulender 

[93] applied an adaptation algorithm similar to the previous ones at the cell level. 

The components corresponding to mechanical stimuli were changed and the 

general function of influences was included. In fact, this influence function is 

designed to simulate communications through a network of osteocytes. It is 

assumed that the influence of mechanical stimuli is stronger directly on the 

osteocyte, but it also affects neighboring osteocytes. Mulender proposed the 

following type of function of influences: 

 

( )

( )
id x

D
if x e

−

= . 

 

Here 
id  is the radius in millimeters from the center of the osteocytes, D  is a 

constant that determines the rate of extinction of the impact. Using the influence 

function, it is possible to write the following mechanical error function that 

controls reconstruction at the cellular level: 

 

 
1

( , ) ( ) ( )
n

i i

i

F x t f x S t k
=

= − . 

Here 
iS  is a mechanical stimulus (Mulender chose it as a tensile energy 

density), 
if  - a function of influences, k  - a reconstruction constant (it can be 

considered as a target level of tensile energy density). The algorithm for tissue 

reconstruction can be written by the following equation: 

 

( )
( , )

dm t
F x t

dt
=  
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Here m  it is bone mass, F  - a function of mechanical errors,   - a 

reconstruction constant, which controls the rate of reconstruction. It is assumed 

that the structural and functional relationship at the cellular level has a similar 

appearance to those used in the simulation of continuous reconstruction: 

 

3( , ) ( , )E x t Cm x t= . 

 

This is E  Young's modulus, C  which  is m  the  bone mass.  Using such 

modeling to assess osteoporosis, Mulender simulated both changes during exercise 

and changes in their absence. It was found that a decrease in the constant k  leads 

to bone thinning and vice versa. Changes in load lead to irreversible processes in 

the bone architecture, which is very important in the study of osteoporotic bone 

damage. In general, the Mulender algorithm for reconstruction at the cellular level 

can be written as follows: 

 

1. Change the structure of the bone: 

 

( )
( , )

dm t
F x t

dt
=  

 

2.  Change the effective strength of the bone based on the altered bone structure: 

 

( ( ), )eff bc f e t t C E a= +   =  

 

3.  Solve the equation of equilibrium with new strength to determine the new 

compressive-tensile fields: 

 

( )( ) ( ) 0effc t t t t
x




+  +  =


 

 ktSettmttm
i

D

xd i

−+=+
−

)()()(
)(


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4.  Go back to step 1 and change the bone structure. Repeat until convergence is 

achieved. 

 

 

2.6. Construction of a model of bone tissue reconstruction based on 

logistic-type equations 

 

In this subsection, we will consider a method of building a deterministic 

dynamic model for the study of one important problem of medicine. This algorithm 

can be used to solve more general problems.  

The growing share of primary and secondary osteoporosis [66] in the 

structure of the general morbidity of the population [128] of different countries of 

the world [88,96] draws the attention of researchers of various directions to the 

study of bone tissue reconstruction both among healthy populations and in various 

types of pathology [65,88].  

One of the most common methods for measuring bone mineral density is 

one- and two-photon X-ray densitometry for the peripheral (radius and heel) and 

axial (proximal femur and spine) skeleton.  

The method of double X-ray absorptiometry was originally implemented on 

X-ray absorptiometers (DXA - DEXA technology) of LUNAR Corporation, which 

are based on the principles of comparing data on bone density obtained during the 

study of a particular patient with a built model of the state of bone density in a 

separate ethnic population (separately for white, black, Asian races), taking into 

account the most stable population indicators (age, weight, height, etc.). Such 

mathematical models, created by step-by-step regression analysis based on large 

population studies, describe bone density in a particular ethnic group. Thus, the 

mineral density of bone tissue in the Ward's triangle in the white European 

population aged 40-65 years is described by the equation: 
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( ) 1.05 (0.0045 )t t = −  , 

 

where t  is the age of the patient.  

Densitometric examinations of the lumbar spine and femur are carried out in 

the consultative and therapeutic center of the Ternopil State Medical Academy on 

the densitometer DPX-A (LUNAR Corp.) [32]. It consists of (Fig. 2.6.1):  

- a table for placing a patient with control devices built into its base and a 

tripod with devices for scanning and focusing the laser beam; 

- a computer that manages the scanning process and analyzes the data 

obtained; 

- a monitor on which the obtained research data and a printer are visualized. 

 

Fig 2.6.1. DPX-A Densitometer (Lunar Corp.)  

 

The scanning table consists directly of a table and a scanning "arm". Power 

sources, electronic boards, motors with movement mechanisms and an X-ray 

source are built inside the table. The "arm" of the scanner consists of a scintillation 

detector and a holder in which the detector's communication cable with the 

electronic boards of the table pass. The scanning "arm" is equipped with a control 

panel with two switches to determine the position of the detector. The Back/Front 

switch allows you to accurately set the detector position across the width of the 

table; the Left/Right switch allows the detector to move along the length of the 
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table. The "shoulder" is also equipped with four signal bulbs that induce the 

position of the damper, the supply of power to the table, the laser and to the X-ray 

tube. The computer stores and analyzes the results obtained during the scan, it also 

controls the table. The monitor provides (with the help of specialized software) 

visualization of research data and images of the scanning region.  

With the help of DPX-A, the proximal femur is examined in three areas: the 

femoral neck (Neck), Wards' triangle (Wards), and the greater trochanter 

(Trochanter). After scanning the experimental area, which, depending on the 

scanning mode, takes from 2 to 10 minutes, the results are analyzed by a computer.  

The results are displayed on the monitor in the form of a color graph, in 

numerical and percentage form. The printer prints data in the form of tables. 

The purpose of the next study will be to build a mathematical model of the 

state of bone tissue in patients with pathology of the hematopoietic apparatus. On 

the absorption X-ray densitometer of the company "Lunar Corp" (USA), the state 

of bone tissue of the lumbar spine was studied in 300 hematological patients [32].  

Approaches to the construction of a mathematical model are based on 

preliminary statistical assessment of the obtained densitograms and studies 

[66,88,98]. The model is based on the following assumptions regarding the nature 

of changes in bone mineral density.  

In a fairly short period of time t , the  rate of change in bone density 
( )t

t




 

proportionally depends:  

- on the value of density at a given time t , that is ( )t , corresponding to the 

exponential nature of growth ( )t  with age, inherent in most quantitative 

indicators of the state of the body;   

- from the size 
2 ( )t of . 

 The latter assumption indicates that a certain limit value has been reached 

with age * .  
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 So, for a change ( )t  A difference equation is proposed  

 

( )
( )

( ) ( )
t

t t
t


  


= −


,   (2.6.1) 

 

that passes into 0t →  the  differential equation 

 

( )'( ) ( ) ( )t t t   = − .    (2.6.2) 

 

Here a  and   are the unknown parameters of the model, which must be 

determined on the basis of experimental data. Note that this model, which does not 

take into account other indicators of the state of bone tissue, can be used to 

describe changes ( )t  at the age of 15-70 years. 

Algorithm for finding unknown parameters ,  . Analysis of 

densitometric research data is somewhat difficult for the following reasons:  

- a wide range of indicators of the condition due to the peculiarities of the 

formation of bone tissue in different strata of the population with a certain age; 

- the influence of various kinds of diseases on the mineral density of bone tissue; 

- the inability to trace the change in the mineral density of the patient's bone tissue, 

since the process of bone formation takes a long time. 

Therefore, the following algorithm for finding unknown parameters is proposed 

,   based on research data.   

 

1. Averaging. In this case, on the basis of real indicators of bone mineral density, 

average values are calculated n . Here n  is the age of patients in years.  
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( )

1

1

( )

k N
m

N n

mk N
 

=

=  , , 1, 3,n N n N N = = − −
( )4

0

1

1 1
, 4, ,

5 ( )

k ln
m

n n

l n m

n N n
k l

 
+

= =

= = −   

(2.6.3) 

Here 
0 ,n N  is the minimum and maximum value of the age of the patients under 

study ( )k l  - the number of patients l  aged  years, m

n  - m the patient  of n  the age 

years. 

2. Linearization. The proposed difference equation is as follows: 

 

1 1 ( ), 1, 1
2

n n
n n on n N

 
  + −−

= − = + −     (2.6.4) 

Taking into account 0n  that , we arrive at the equation of linear regression with 

respect to   and   

 

  1 1

2

n n
n

n

 
 



+ −−
= −       (2.6.5)   

 

3. Solution of the regression equation (2.6.5) with respect to   and   by the 

method of least squares. We come to the system of equations 

 

1 1 12
1 1

1 1 1

,
2

o o o

N N N
n n

n n

n n n n n n

 
   

− − −
+ −

= + = + = −

−
− =         

 (2.6.6) 

1
1 1

1

( 1)
2o

N
n n

no

n n n

N n
 

  


−
+ −

= +

−
− − − =   

Note: Note that the estimates for the parameters ,   as solutions of 

equations (2.6.6) are rather inaccurate. The reason is that they are based on a rather 
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"rough" approximation of the desired differential equation (2.6.2) to the difference 

equation (2.6.4), where the grid step is one year.  

4. Estimates from (2.6.6) are selected as an initial approximation for the 

parameter identification problem ,  . 

Next, to find the parameters   ,   we will use the result of theorem 2.6.1.  

5. Select the solutions of the system of equations (2.6.6) as initial 

approximations 
0  and 

0 .  

6. We check the fulfillment of the conditions for the identification of parameters: 
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0

0 0det ( , ) ( , ) 0

T

T

t

U t U t dt    ,  
0 0 0( , )  = . 

Here 2

0( , )U t R    is the solution of the differential equation: 

( )
2

0 0 0

0 0

0

0 0

( , ) ( , ) ( , )
2 ( , ) ( , ) ,

( , )

0
( , ) .

0

dU t t t
t U t

dt t

U t







    
   

 



  −
= − +  

  


 
=  
 

 

If the condition is violated, then the algorithm is terminated. 
0   - found parameter 

value. 

7. Approximation 
1  and 

1  calculation according to the formulas: 

1 0 0  = + , 

1 0 0  = +  . 

Here 

( ) ( )
0 0

1

0 0 0 0 0 0, ( , ) ( , ) ( , ) ( ) ( , )

T T

T T

t t

U t U t dt U t t t dt         

−

 
  = − 

 
 
  . 

8. We integrate equation (2.6.2) for the values of the parameters 
1 1 1( , )  = . 

The solution is denoted by 
1( , )t  . 

9. We return to step 6 and then find the following values ( , )i i i  =  until 

convergence is achieved. 
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2.7. The relationship between mineral bone density and vertebral height  

 

The following assumptions are made. Let in a fairly short period of time t  

the  rate of change in BMD 
( )t

t




: 

◼ proportionally depends on the total height of the vertebrae L1 - L4  ( )H t ; 

◼ proportionally depends on the magnitude 
( )

( )

t

H t


of . 

The last two assumptions indicate the dependence of changes in the BMD on 

the state of the L1  - L4  vertebrae . It has been established [32] that it is the height 

of the L1 - L4 vertebrae that  significantly affects the aging process of the human 

body. 

Let in a fairly small period of time  the t  rate of change in the total height 

of the vertebrae L1 - L4 
1H

t

−


: 

◼ proportionally depends on 1H −  a given time t ; 

◼ proportionally depends on ( )t .  

So, to describe the changes, ( )t  a 
1H −
 system of differential equations is 

proposed 

 

1 1

1
1

( )
( ) ( ) ( ) ( ),

( )
( ) ( )

d t
t t H t H t

dt

dH t
H t t

dt


  

 

− −

−
−

= + +

= +

     (2.7.1) 

 

Here , , , ,      are unknown parameters. The algorithm for finding model 

parameters , , , ,      uses the steps above described algorithm for finding model 

parameters ,   , namely: 
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1.  Averaging. 

2.  Smooth. 

3.  Linearization. 

4.  Solution of regression equations. 

 

We only note that smoothing and linearization are carried out separately for 

( )t  and 1( )H t− . The system of equations obtained to determine the initial 

approximations of the coefficients has the form: 

 

( )
0 0 0

2
2 1

1 21 11 1 1 1
1 1

2
1 1 1 1

( ) ( )
,

2o

nN N N N
n n n nn

n n n n n n n nn n n n

H
HH H  

  
   

−
−− −− − − −

+ −

= + = + = + = +

  −
  + + =
 
 

     

0 0 0 0

2
1 211 1 1 1

1 2 1 1 1

2
1 1 1 1

( ) ( )( )
( ) ,

2

N N N N
n n nn

n n

n n n n n n n nn n

HH
H H

 
  

 

−−− − − −
− − + −

= + = + = + = +

−
+ + =     

 

0 0 0

11 1 1
1 1 1

0 2
1 1 1

( 1) ,

2

N N N
n n n

n

n n n n n nn n

H
H N n

 
  

 

−− − −
− + −

= + = + = +

−
+ + − − =  

0 0

2
1 11 1 1

1 1

1 1 1 2
1 1 1

( )
,

2( )o

N N N
n nn n n

n n n n n nn n n

H H

H H H

  
 

− −− − −
+ −

− − −
= + = + = +

  −
+ = 

 
 

    

 

0 0

1 11 1
1 1

0
1 1 2

1 1

( 1)
2( )

N N
n nn

n n n nn n

H H
N n

H H


 

− −− −
+ −

− −
= + = +

−
+ − − =   

 

 

2.8. Compartment model of experimental toxic colitis based on a 

nonlinear system with a delay 
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Today, chronic inflammatory bowel disease is an important medical and 

social problem due to its wide spread, temporary and long-term disability, as well 

as severe and complicated course. Among the etiological causes and pathogenetic 

mechanisms of the development of the disease, the use of low-quality and 

contaminated food, water, chemicalization of all areas of human life, the difficult 

environmental situation in general, uncontrolled use of drugs, stress, genetic 

predisposition, immune, metabolic and microcirculatory disorders, a decrease in 

the resistance of the gastroduodenal system and the body as a whole are considered 

[60]. 
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Flowchart 2.8.1. Toxic colitis model 
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For inflammatory processes of an infectious nature, the decisive factor in 

terms of the process and its prognosis is the competition of infectious and immune 

agents. In this regard, the most important are the issues of immunity. Therefore, 

mathematical models describing the inflammatory process must primarily take into 

account the body's immune response.  

As the phase coordinates of the system, we choose: 

1х  - lead concentration (in mg/1 kg of body weight) 

2х - concentration of IgA antibodies  (in g/l) 

3х - concentration of IgM antibodies  (in g/l) 

4х - concentration of IgG antibodies  (in g/l) 

5х  - indicator of circulating immune complexes (in conventional units) 

6х - concentration of IgA producing cells  (number on the 
21мм  intestinal 

mucosa) 

7х  - concentration of cells - producers of IgM (number on the 
21мм  intestinal 

mucosa) 

8х  - concentration of cells - producers of IgG (number on the 
21мм  intestinal 

mucosa) 

9х  - the number of phagocytic leukocytes (in %) 

10х  - the degree of damage to the colon. 

The colon of 32 male white rats was examined. Toxic colitis was simulated by 

daily intragastric administration of lead acetate at a daily dose of 50 mg/1 kg of 

body weight for 3 months [60]. As a unit of time, we will consider 1 day. 

Equation for 
1( )х t .Consider the change 

1( )х t  over a short period of time t . 

In the case of intragastric administration of lead acetate, which lasts for 30 seconds 

at a rate 
1 1736100 /1v мг добу=  , we have: 
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( )1 1 1 1 1,2 1 2 1,3 1 3 1,4 1 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )х t x t t x t v t k x t x t t k x t x t t k x t x t t = +  −   −  −  −   

Here 
1,2k , 

1,3k , are  the 
1,4k  coefficients that determine the probability of 

neutralization of 1 mg of lead acetate by the corresponding antibodies. 

In the absence of lead acetate administration from the outside 
1 0v = . 

Dividing the equation by t and directing 0t →  , we get: 

 

4

1 1,2 1 2 1,3 1 3 1,4 1 41

4

1,2 1 2 1,3 1 3 1,4 1 4

( ) ( ) ( ) ( ) ( ) ( ), [ , 3,472 10 ], 0,30( )

( ) ( ) ( ) ( ) ( ) ( ), [ , 3,472 10 ], 0,30

v k x t x t k x t x t k x t x t t і t іdx t

dt k x t x t k x t x t k x t x t t і t і

−

−

 − − −  +  =
= 

− − −  +  =

           (2.8.1) 

Equations for 
2( )x t , 

3( )x t , . 
4( )x t  Let's consider the change 

2( )x t  within a 

short period of time t . According to block diagram 2.8.1, we have: 

 

2 2 2 2,6 6 2 2 2,1 1,2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )x t x t t x t k x t t k x t t k k x t x t t = + −   −  −   

 

Here 
2,6k  is the rate of production of IgA antibodies  by one plasma cell, 

2k  - a 

coefficient inversely proportional to the decay time of antibodies IgА , 
2,1k  - the 

number of antibodies required to neutralize 1 mg of lead acetate. 

Dividing the equation by t  and directing 0t →  , we get: 

2
2,6 6 2 2 2,1 1,2 1 2

( )
( ) ( ) ( ) ( )

dx t
k x t k x t k k x t x t

dt
= − −     (2.8.2) 

In the same way, we obtain the equation for IgM and IgG: 

3
3,7 7 3 3 3,1 1,3 1 3

( )
( ) ( ) ( ) ( )

dx t
k x t k x t k k x t x t

dt
= − −     (2.8.3) 

 

4
4,8 8 4 4 4,1 1,4 1 4

( )
( ) ( ) ( ) ( )

dx t
k x t k x t k k x t x t

dt
= − −     (2.8.4) 

 

The introduced coefficients have a similar purpose. 
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Equation for 
5( )х t . According to the methodology demonstrated above on 

the example of variables 
1 4( ) ( )x t x t−  and in accordance with block diagram 2.8.1, 

we have: 

 

5
5,1,3 1 3 5,1,4 1 4 5 5

( )
( ) ( ) ( ) ( ) ( )

dx t
k x t x t k x t x t k x t

dt
= + −   (2.8.5) 

 

Here 
5k  is the coefficient that determines the excretion of circulating immune 

complexes. 

Equations for 
6( )х t , 

7( )х t , . 
8( )х t   

 

06
10 6,1,2 1 6 2 6 6 6 6

( )
( ( )) ( ) ( ) ( ( ) ),

dx t
x t k x t x t k x t x

dt
  = − − − −  (2.8.6) 

07
10 7,1,3 1 7 3 7 7 7 7

( )
( ( )) ( ) ( ) ( ( ) ),

dx t
x t k x t x t k x t x

dt
  = − − − −  (2.8.7) 

08
10 8,1,4 1 8 4 8 8 8 8

( )
( ( )) ( ) ( ) ( ( ) ),

dx t
x t k x t x t k x t x

dt
  = − − − −  (2.8.8) 

 

Here 1( ) : [0,1]R  →  is a continuous non-increasing function, which 

characterizes a violation of the normal functioning of the immune system due to 

significant damage to the colon; 
6,1,2 7,1,3 8,1,4, ,k k k  — coefficients that determine the 

probability of meeting antibodies with lead acetate particles 
6 7 8, ,k k k  — 

coefficients inverse of the lifetime of plasma cells 0 0 0

6 7 8, ,x x x  — concentrations of 

plasma cells in the initial ("healthy") state; 
6 7 8, ,   — the time intervals during 

which the formation of a cascade of plasma cells is carried out. 

Equations for 
9( )x t  
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9
9,5 9 5 9 9

( )
( ) ( ) ( )

dx t
k x t x t k x t

dt
= −    (2.8.9)  

 

Equations for 
10( )x t  

 

10
10,1 1 10 10

( )
( ) ( )

dx t
k x t k x t

dt
= −    (2.8.10) 

 

Here 
10,1`k is a coefficient that determines the rate of cell death due to the 

damaging effect of lead acetate 
10k — a coefficient that takes into account the rate 

of recovery of the damaged organ.  

Like the work [51] we put  

 

1, 0.1,

( ) 10
(1 ) , 0.1 1.

9

m

m
m m






= 
−  



 

 

This type of function ( )m  indicates a slowdown in the process of plasma cell 

formation when the colon is weakened by toxic colitis. 

Identification of parameters based on the quadratic quality criterion. Let 

10

0( ) , [ , ]зx t R t t T   be the set values of the indicators of the toxic colitis system at 

the observation interval 
0[ , ]t t T . To estimate the parameters of the system 

(2.8.1)-(2.8.10), we use the consequence 2.4.1. Let's denote ( , , )U t   through , 

( , , )U t    - the sensitivity functions of the system (2.8.1)-(2.8.10).    

 

1,2 1,3 1,4 2,6 2 2,1 3,7 3 3,1 4,8 4 4,1

5,1,3 5,1,4 5 6,1,2 6 7,1,3 7 8,1,4 8 9,5 9 10,1 10

( , , , , , , , , , , , ,

, , , , , , , , , , , , )

k k k k k k k k k k k k

k k k k k k k k k k k k k

 =
, 
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Under the vector of delays   

 

( )6 7 8, ,   = . 

 

So, 10 25( , , )U t R    , . 10 3( , , )U t R     

Sensitivity functions can be found as solutions to the main initial problems: 

 

6 7

8

( , , )
( , , ) ( , , ) ( , , )

( , , )

dU t
U t U t U t

dt

U t



  



 
       

  

=  + − +  − +

+ − + 

, 

( , , )U t     ,   0 6 7 8 0max , , ,t t t    −  . 

 

The following notations are used here for 
10 10R  , 

10 10R  , 
10 10R  , , 

10 10R  : 10 25R   

 

1,2 2 1,3 3 1,4 4 1,2 1 1,3 1 1,4 1

2,1 1,2 2 2 2,1 1,2 1 2,6

3,1 1,3 3 3 3,1 1,3 1 3,7

4,1 1,4 4 4 4,1 1,4 1

5,1,4 4 5,1,3 1 5,1,4 1 5

6

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0

0 0 0 0 0 0 0 0

k x k x k x k x k x k x

k k x k k k x k

k k x k k k x k

k k x k k k x

k x k x k x k

k

− − − − − −

− − −

− − −

− − −

−

−

 =

10

6,1,2 1 6 2 6 10

10

7

7,1,3 1 7 3 7 10

10

8

8,1,4 1 8 4 8 10

9,5 9 9 9,5 5

10,1

, 0.1

10
( ) ( ),.1 1

9

0, 0.1

0 0 0 0 0 0 0 0 10
( ) ( ),.1 1

9

0, 0.1

0 0 0 0 0 0 0 0 10
( ) ( ),.1 1

9

0 0 0 0 0 0 0 0

0 0 0

x

k x t x t x

x

k
k x t x t x

x

k
k x t x t x

k x k k x

k

 

 

 




− − −  




− 
− − −  




− 
− − −  

− −

100 0 0 0 0 k

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−  
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10 6,1,2 2 6 10 6,1,2 1 6

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

( ) ( ) ( ) ( ) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

x k x t x k x t   

 
 
 
 
 
 
 

 =  
− − 

 
 
 
 
 
  

 

10 7,1,3 3 7 10 7,1,3 1 7

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

( ) ( ) 0 ( ) ( )

0 0 0

0 0 0

0 0 0

x k x t x k x t   

 
 
 
 
 
 
 

 =  
 
 − −
 
 
 
 
  

 

 

10 8,1,4 4 8 10 8,1,4 1 8

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

( ) ( ) 0 0 ( ) ( )

0 0 0 0

0 0 0 0

x k x t x k x t   

 
 
 
 
 
 
 

 =  
 
 
 

− − 
 
 
  
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1 2 1 3 1 4

2,1 1 2 6 2 1,2 1 2

3,1 1 3 7 3 1,4 1 4

4,1 1 4 8 4 1,4 1 4

1 3 1 4 5

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

x x x x x x

k x x x x k x x

k x x x x k x x

k x x x x k x x

x x x x k

− − −

− − −

− − −

− − −

−
 =

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

















 

 

0

10 1 6 2 6 6 6

0

10 1 7 3 7 7 7

0

10 1 8 4 8 8 8

9 5 9

1 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

( ) ( ) ( ) ( ) 0 0 0 0 0 0 0 0

0 0 ( ) ( ) ( ) ( ) 0 0 0 0 0 0

0 0 0 0 ( ) ( ) ( ) ( ) 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

x x t x t x x

x x t x t x x

x x t x t x x

x x x

x x

  

  

  





− − − −

− − − −

− − − −

−

− 














 

( , , )U t    is the solution of the following problem: 

 

6 7 8

( , , )
( , , ) ( , , ) ( , , ) ( , , ),

dU t
U t U t U t U t

dt


   

 
          =  + − +  − + −

( , , )U t   ,   0 6 7 8 0max , , ,t t t    −  . 

 

To find the parameters   and values of the delay ,  we will use iterative 

procedures: 

 

1 , 0,1,2,...i i i i  + = +  =  

(2.8.11) 

1 , 0,1,2,...i i i i  + = +  =  
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Here 
0 0,   are the initial approximations of parameters and delays. The 

values of increments 25

i R   and 3

i R   are calculated according to the 

formulas: 

 

( )
0 0

1

( , , ) ( , , ) ( , , ) ( ) ( , , ) ,

T T

T T

i i i i i i i з i i

t t

U s U s ds U s x s x s ds          

−

 
 = − 

 
 
   

 

( )
0 0

1

( , , ) ( , , ) ( , , ) ( ) ( , , ) ,

T T

T T

i i i i i i i з i i

t t

U s U s ds U s x s x s ds          

−

 
 = − 

 
 
   

 

 

At the same time, we believe that the conditions for the identification of the 

system are met, namely: 

 

0

det ( , , ) ( , , ) 0

T

T

i i i i

t

U s U s ds      ,  

0

det ( , , ) ( , , ) 0

T

T

i i i i

t

U s U s ds      ,  

0,1,2...i =  

 

Example. Let's use iterative procedures (2.1.11) to numerically find  

parameters   and values of delays . As initial values, we will choose the values 

inherent due to the physical content of the parameters: 

 

0 (0.2,0.2,0.2,0.1,0.1,10,0.1,0.1,10,1,1,0.1,10000,0.5,10000,0.5,

10000,0.5,10000,0.5,0.01,1,300,0.1)

 =
 

 

0 (0.1,0.1,0.1) =  

 



 131 

 

Using the algorithm proposed above, we have: 

 

10 (0.23,0.23,0.23,0.17,0.17,10,0.17,0.17,10,0.9,0.9,0.1,10000,0.5,10000,0.5,

10000,0.5,10000,0.5,0.01,1,300,0.12)

 =

(2.8.12) 

10 (0.5,0.5,0.5) =  

 

 

2.9. An example of the identification of an integral nucleus  

 

A model of the white blood cell population is considered, which plays an 

extremely important role in the process of hematopoiesis and is an indicator of the 

toxicity of treatment methods. Since white blood cells originate from the bone 

marrow 23, they are also associated with bone mineral density 171. 

So, let's denote through ( )x t  the density of white blood cells in the blood 

(cell units / ml of blood). Based on the results of the study [26], the following 

equation is proposed: 

 

( )
( ) ( ) ( )

( ) ( ) ( )

0

0 0 0 0

, ( , ),

, 0, , .

b

a

dx t
x t v s x t s ds t t

dt

x t x x t t t a t

 


= − + +  

 =   +


  (2.9.1) 

 

Here ( ) 1

0( , )x t C t   is a continuously-differentiable function, 0a b   

(you can consider a case 
0a t t= − ), 

0x  - the initial value is known, ( )v s  - an 

unknown integral nucleus. It is assumed that ( ) ( )1 ,0v s C −  in this case: 
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( )
( ) ( )

( )

1

0

, ,0 ,
dv s

f s s a
ds

v a v


= 


 =

    (2.9.2) 

 

where ( ) ( )1 2 ,0f s L a , 
0v R  are the unknown function and initial value. 

Let the observation be given: 

 

( ) ( ) ( )2 0, [ , ]y t x t f t t t T= +  ,     (2.9.3) 

 

where ( )2 2 0[ , ]f t L t T  is the unknown error.  

It is necessary to find the estimate of the integral nucleus ( )v s if the nucleus 

itself ( )2f t  satisfies the condition with an unknown function: 

 

( ) ( )
0

2

2 2

1 2 0 1 2 2 0 0, , 1

b T

a t

d
J f f v q ds q f t dt q v

ds

 
= + +  

 
  .  (2.9.4) 

 

As an initial approximation of the nucleus ( )v s  , consider the gamma 

distribution density function: 

 

( )
( )

( ) ( )
1

0

0, ,

, ,
1

m
m b s

s b

v s
b s e s b

m

 +
− −




= 
−  +

  (2.9.5) 

 

where , 0m  . It has been shown [106] that such a choice of the density function 

is in good agreement with experimental data on the time of cell maturation and 

appears in the modeling of cell cycles [117]. [26 parameter values ,m  for people 

with different types of pathologies] have been calculated. 
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0.36, 1.15m = = .     (2.9.6) 

 

Based on the results of subsection 2.3, the  following procedure for 

identifying the nucleus is proposed ( )v s . 

 

Algorithm for identifying the integral core ( )v s  of the problem (2.9.1)-

(2.9.4). 

1. Enter the parameters of the problem: 

-Coefficients 
0 1 2, , , , ;q q q   

- initial value 
0x ; 

- the value of moments of time 
0, , ,t T a b ; 

- observation ( )y t , 
0[ , ]t t T ; 

- initial approximation ( )0 , [ , ]v s s a b . 

2. We are looking for a solution ( )0x t  to the problem (2.9.1) at ( ) ( )0v s v s= . 

3. We form a cycle starting j  from zero, within which: 

(1) we are looking for a solution ( )P t  to the Ricatti equation: 

 

( )
( ) ( ) ( ) ( )

( )
0

2

1 1 2

1

0

1
2 ,

0.

b T

j j

a t

dP t
P t x t s dt x t s ds q P t

dt q

P t




= − + + + −



=

 
(2.9.7) 

 

(2) we are looking for a solution to the Cauchy problem: 

 

( )
( ) ( ) ( ) ( )

( )

2

0 0

,
g t

g t P t q y t g t
dt

g t x




= − + −   

 =

   (2.9.8) 



 134 

 

(3) we look for the solution of the conjugate system: 

 

( )
( ) ( ) ( ) ( ) ( )

( )

2 ,

0

p t
p t q y t P t p t g t

dt

p T




= − − −   

 =

  (2.9.9) 

 

(4) Looking for a score ( )x t of: 

 

( ) ( ) ( ) ( )1 0, [ , ]jx t P t p t g t t t T+ = +     (2.9.10) 

 

(5) looking for an integral kernel estimate: 

 

( ) ( ) ( )
0

1

1

1
T

j j

t

v s x t s p t dt
q

+ = + .    (2.9.11) 

 

At the same time: 

( )0 0

0

1
v p t

q
= .    (2.9.12) 

 

(6) we compare ( )v s  the values on the two previous iterations: if 

( ) ( )1j jv s v s + −  , then the end of the algorithm ( ( )1jv s+  is the estimate found), 

otherwise we go to the beginning of the loop. 

Example 2.9.1. On the basis of the algorithm proposed above, a computer 

program for identifying the integral core of the problem (2.9.1) has been 

developed. As an initial approximation, the gamma distribution density function 

(2.9.5) with parameter values (2.9.6) has been selected. The results of its work are 

shown in Fig. 2.9.1. 
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(a) (b)  

(c)  

 

d) e) f)  
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g)  h) i)  

 

j) k) l)  

 

m) n) o)  
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p)  

 

Rice. 2.9.1. Results of the program for the system (2.9.1) with parameters  

4

0 1 2 0

0

2, 3.2, 1, 10 , 0.01, 0.001,

20, 4, 0, 30

q q q x

a b t T

 = = = = = =

= − = − = =
 

Here: 

a) solving the equation at the initial approximation of the nucleus; 

b) observation; 

c) the solution of the Ricatti equation; 

d) the value of the function g ; 

e) solution of a conjugate system; 

f) an approximate solution has been found; 

g) the exact value of the integral nucleus; 

h)-o) estimates of the integral core to the 10th iteration. 

p) x2 is the exact value of the kernel, x8 is the estimate of the kernel 

Conclusions. 1. A solution to the problem of identification of parameters of 

differential equations given in Hilbert space under conditions of uncertainty has 

been proposed. The conditions for the existence of solutions of such a problem 
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have been established, which coincide with the conditions of continuous 

dependence of solutions of differential equations on parameters. In the case of a 

linear model and a space, 
2L  the condition is a convergence in the standard mean 

on a priori set. A constructive algorithm for solving the problem of identification in 

Hilbert space, which is reduced to solving the corresponding boundary value 

problem. A method of reducing it to Cauchy problems is proposed and one partial 

case is considered, which allows solving the problem not only in operator form. 

2. The estimation problem is solved, when some observations of the system 

are given, including an unknown integral nucleus, its known state and possibly a 

derivative. Assuming the differentiation of the integral nucleus and quadratic 

constraints, a posteriori estimation of the integral nucleus, a posteriori set and an 

error are obtained. The case of unknown constraints on the initial value of the 

integral nucleus is also considered. All results were presented in the form that 

includes solutions of conjugate systems and eigenvalues of some linear operators. 

3. Algorithms for solving the problem of estimating the integral nucleus in 

differential equations with Voltaire operators are constructed. The first approach is 

to apply an iterative procedure. The second identification algorithm is carried out 

by decomposition by a small parameter. At the same time, the found estimates are 

formulated in terms of solutions of conjugate systems. The convergence of the 

proposed algorithms is shown by a numerical example. Further research should be 

directed to approbation of the methods proposed in this section for solving the 

assessment problems presented in [185].  

4. An optimization method for identifying parameters in the construction of 

models of systems with a delay based on sensitivity functions is built and its use 

for models of pathological processes is demonstrated. Estimates of convergence of 

this method are obtained. 

5. Many methods for identifying the parameters of pathological processes 

are based on statistical processing of experimental data. Such statistical estimates 
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of parameters should be chosen as an initial approximation for the proposed 

optimization procedures for systems with a delay. 

6. An overview of the results of solving an important problem of medicine – 

modeling of bone tissue reconstruction – is presented. A number of numerical 

algorithms are presented for calculating changes in bone mineral density over time, 

taking into account both mechanical loads and biological factors. From the above 

review, it can be seen that modeling changes in bone tissue based on the mineral 

density indicator makes sense. 

7. A model of the process of bone reconstruction in the class of logistic-type 

equations has been built. Identification of model parameters based on the 

optimization algorithm is carried out. 

8. The method of parameter identification is also illustrated in the 

construction of a compartment model of the disease, namely, experimental toxic 

colitis. 

These results were reflected in monographs [170, 173, 185],  a number of 

journal articles [158, 175, 176, 180, 190, 192, 194] and conference proceedings 

[153, 164].  

 


